• Title/Summary/Keyword: Porous polyethylene implant

Search Result 17, Processing Time 0.035 seconds

Maxillofacial reconstruction with Medpor porous polyethylene implant: a case series study

  • Khorasani, Mansour;Janbaz, Pejman;Rayati, Farshid
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.3
    • /
    • pp.128-135
    • /
    • 2018
  • Objectives: The role of alloplastic materials in maxillofacial reconstruction is still controversial. Determining the utility of porous, high-density, polyethylene implants as a highly stable and flexible, porous alloplast, with properties such as rapid vascularization and tissue ingrowth, is crucial in cases of maxillofacial deformities and aesthetic surgery. Materials and Methods: Thirty high-density porous polyethylene implants were implanted in 16 patients that had been referred to a private office over a three-year period. These implants were used for correcting congenital deformities, posttraumatic defects and improving the aesthetic in nasal, paranasal, malar, chin, mandibular angle, body and orbital areas. Results: The outcomes of the cases in this study showed good aesthetic and functional results. The majority of patients had no signs of discomfort, rejection or exposure. Two implants suffered complications: a complicated malar implant was managed by antibiotic therapy, and an infected mandibular angle implant was removed despite antibiotic therapy. Conclusion: Based on the results, the Medpor implant seems to be an excellent biomaterial for correcting various facial deformities. Advantages include its versatility and relatively ideal pore size that allows for excellent soft tissue ingrowth and coverage. It is strong, flexible and easy to shape.

Cranioplasty with the Porous Polyethylene Implant(Medpor) for Large Cranial Defect

  • Hong, Ki-Sun;Kang, Shin-Hyuk;Lee, Jang-Bo;Chung, Yong-Gu;Lee, Hoon-Kap;Chung, Heung-Seob
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.2
    • /
    • pp.96-101
    • /
    • 2005
  • Objective : This paper describes our experience and implant technique for cranioplasty of a large cranial defects using a porous polyethylene implant[Medpor] and compares the results with polymethylmethacrylate[PMMA]. Methods : Sixteen cranioplasties were performed using Medpor[n= 10] and PMMA[n=6] implants between June 2003 and January 2005. The criterion for patient enrollment was a defect larger than 10cm in diameter. This study compared the operation times and complications. Results : The operation times ranged from 105 to 250minutes[Mean $180^{\circ}{\pm}44minutes$) in Medpor and from 185 to 460minutes [mean 128minutes] in PMMA. The absolute operation times were shorter using the Medpor implant and the differences were statistically significant[P=0.030]. Satisfactory cosmetic results were obtained in all cases using the Medpor implant and with no implant-related complications. Bone ingrowth to the medpor implant was presumed to be the result on an increase in Houndsfield units of the implant, particularly at the marginal areas in the serial follow-up brain computed tomography images. Conclusion : It is believed that the properties of a Medpor implant make this implant an good alternative to the existing methods of a cranial contour correction. However, a further follow-up study will be needed.

Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible

  • Sosakul, Teerapan;Tuchpramuk, Pongsatorn;Suvannapruk, Waraporn;Srion, Autcharaporn;Rungroungdouyboon, Bunyong;Suwanprateeb, Jintamai
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.106-120
    • /
    • 2020
  • Purpose: A new form of porous polyethylene, characterized by higher porosity and pore interconnectivity, was developed for use as a tissue-integrated implant. This study evaluated the effectiveness of porous polyethylene blocks used as an onlay bone graft in rabbit mandible in terms of tissue reaction, bone ingrowth, fibrovascularization, and graft-bone interfacial integrity. Methods: Twelve New Zealand white rabbits were randomized into 3 treatment groups according to the study period (4, 12, or 24 weeks). Cylindrical specimens measuring 5 mm in diameter and 4.5 mm in thickness were placed directly on the body of the mandible without bone bed decortication, fixed in place with a titanium screw, and covered with a collagen membrane. Histologic and histomorphometric analyses were done using hematoxylin and eosin-stained bone slices. Interfacial shear strength was tested to quantify graft-bone interfacial integrity. Results: The porous polyethylene graft was observed to integrate with the mandibular bone and exhibited tissue-bridge connections. At all postoperative time points, it was noted that the host tissues had grown deep into the pores of the porous polyethylene in the direction from the interface to the center of the graft. Both fibrovascular tissue and bone were found within the pores, but most bone ingrowth was observed at the graft-mandibular bone interface. Bone ingrowth depth and interfacial shear strength were in the range of 2.76-3.89 mm and 1.11-1.43 MPa, respectively. No significant differences among post-implantation time points were found for tissue ingrowth percentage and interfacial shear strength (P>0.05). Conclusions: Within the limits of the study, the present study revealed that the new porous polyethylene did not provoke any adverse systemic reactions. The material promoted fibrovascularization and displayed osteoconductive and osteogenic properties within and outside the contact interface. Stable interfacial integration between the graft and bone also took place.

Surface Modification and Fibrovascular Ingrowth of Porous Polyethylene Anophthalmic Implants

  • Yang, Hee-Seok;Park, Kwi-Deok;Son, Jun-Sik;Kim, Jae-Jin;Han, Dong-Keun;Park, Byung-Woo;Baek, Se-Hyun
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.256-262
    • /
    • 2007
  • The purpose of this study was to determine the effect of surface modification on the fibrovascular ingrowth into porous polyethylene (PE) spheres ($Medpor^{(R)}$), which are used as an anophthalmic socket implant material. To make the inert, hydrophobic PE surface hydrophilic, nonporous PE film and porous PE spheres were subjected to plasma treatment and in situ acrylic acid (AA) grafting followed by the immobilization of arginine-glycine-aspartic acid (RGD) peptide. The surface-modified PE was evaluated by performing surface analyses and tested for fibroblast adhesion and proliferation in vitro. In addition, the porous PE implants were inserted for up to 3 weeks in the abdominal area of rabbits and, after their retrieval, the level of fibrovascular ingrowth within the implants was assessed in vivo. As compared to the unmodified PE control, a significant increase in the hydrophilicity of both the AA-grafted (PE-g-PAA) and RGD-immobilized PE (PE-g-RGD) was observed by the measurement of the water contact angle. The cell adhesion at 72 h was most notable in the PE-g-RGD, followed by the PE-g-PAA and PE control. There was no significant difference between the two modified surfaces. When the cross-sectional area of tissue ingrowth in vivo was evaluated, the area of fibrovascularization was the largest with PE-g-RGD. The results of immunostaining of CD31, which is indicative of the degree of vascularization, showed that the RGD-immobilized surface could elicit more widespread fibrovascularization within the porous PE implants. This work demonstrates that the present surface modifications, viz. hydrophilic AA grafting and RGD peptide immobilization, can be very effective in inducing fibrovascular ingrowth into porous PE implants.

Reconstruction of extended orbital floor fracture using an implantation method of gamma-shaped porous polyethylene

  • Hwang, Woosuk;Kim, Jin Woo
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.3
    • /
    • pp.164-169
    • /
    • 2019
  • Background: The conventional surgical method for reconstructing orbital floor fractures involves restoration of orbital continuity by covering an onlay with a thin material under the periorbital region. However, in large orbital floor fractures, the implant after inserting is often dislocated, leading to malposition. This study aimed to propose a novel implanting method and compare it with existing methods. Methods: Among patients who underwent surgery for large orbital floor fractures, 24 who underwent the conventional onlay implanting method were compared with 21 who underwent the novel ${\gamma}$ implanting method that two implant sheets were stacked and bent to resemble the shape of the Greek alphabet ${\gamma}$. When inserting a ${\gamma}$-shaped implant, the posterior ledge of the orbital floor was placed between the two sheets and the bottom sheet was impacted onto the posterior wall of the maxilla to play a fixative role while the top sheet was placed above the residual orbital floor to support orbital contents. Wilcoxon signed-rank test and Mann-Whitney U test were used for data analyses. Results: Compared to the conventional onlay method, the gamma method resulted in better restoration of orbital contents, better improvement of enophthalmos, and fewer revision surgeries. Conclusion: Achieving good surgical outcomes for extended orbital floor fractures is known to be difficult. However, better surgical outcomes could be obtained by using the novel implantation method of impacting a ${\gamma}$-shaped porous polyethylene posteriorly.

CT Observation of Alloplastic Materials Used in Blow Out Fracture (안와골절 정복술에 사용된 인공삽입물의 전산화단층촬영 추적관찰)

  • Lee, Won;Kang, Dong-Hee
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.380-384
    • /
    • 2010
  • Purpose: Distinguishing different types of implants and assessing the position and size of implants by radiologic exam after orbital wall reconstruction is important in determining the surgery outcome and forecasting prognosis. We observed time-dependent density changes in three types of implants (porous polyethylene, resorbing plate and titanium mesh plate) by performing facial bone CT after orbital wall reconstructions. Methods: A total of 32 patients, who had underwent orbital wall fracture surgery from October 2006 to March 2009 and received facial bone CT as outpatients at 1 postoperative year were included in the study. Follow-up facial bone CT was performed on the patients pre- operatively, 1 month post-operatively, and 1 year post-operatively to observe the status of the orbital implants. Medpor $^{(R)}$ (Porex Surgical, Inc., Newnan, Ga.) was used as porous polyethylene and followed-up in 14 cases; for resorbing plate, Synthes mesh plate (Synthes, Oberdorf, Switzerland) was used in the reconstruction, and followed-up in 11 cases; and titanium mesh plate usage was followed-up in 7 cases. Computed tomographic scan (CT) and water's view were done for radiography, and hounsfield unit (HU) was used to compare density of those facial bone CT. Wilcoxon signed rank test was applied to statistically verify measurement difference in each group of hounsfield units. Results: Facial bone CT examination performed in 1 month post-operative showed that the density of porous polyethylene, resorbing plate and titanium mesh plate were -42.07, 105.67 and 539.48 on average, respectively. Among the three types of implants, titanium mesh plate showed the highest density due to its radiopaque feature. Following up the density of three types of implants in CT during 1 year after the orbital wall fracture surgery, the density of porous polyethylene increased in 10.52 House Field Units and the resorbing plate was decreased in 26.87 HouseField Units. There were no significant differences between densities in 1 month post-operatively and 1 year post-operatively in each group ($p{\geq}0.05$). Conclusion: We performed facial bone CT on patients with orbital fractures during follow-up period, distinguishing the types of implants by the different concentration of implant density, and the densities showed little change even at 1 year post-operative. To observe how implant densities change in facial bone CT, further studies with longer follow-up periods should be carried out.

THE USE OF MEDPORTM(POROUS HIGH-DENSITY POLYETHYLENE) IN ORAL AND MAXILLOFACIAL REGION (구강악안면영역에서의 MedporTM의 임상적용)

  • Park, Gwang-Bum;Yeo, Hwan-Ho;Kim, Su-Gwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.1
    • /
    • pp.60-64
    • /
    • 1999
  • Recently, for the reconstruction of bony defect and cosmetic improvement, many graft materials and implants have been widely used in the various surgical situations. The alloplastic materials have many advantages such as simplicity of operation, no additional need of surgery, and easy manipulation. The $Medpor^{TM}$(porous high-density polyethylene, Porex Co., USA) was initially studied in 1972 for surgical implant and introduced as an implant material for oral and maxillofacial region by Sauer and King in 1988. This material permits full ingrowth of bone into the implants, substantially increasing the implant's incorporation into the recipient site. It can be shaved during the surgery, which results in an improvement and prefabricated various size and shapes to fit into the surgical defect. The $Medpor^{TM}$ was used in 32 patients from 1995 to 1997 at the maxillofacial region. It was used for paranasal augmentation in 24 cases, for malar augmentation in 2 cases, for infraorbital augmentation in 2 cases, for mandibular angle augmentation in 2 cases, for mandibular body augmentation in 2 cases, for chin vertical augmentation in 1 case. It was mainly fixed with miniplate or screw. There were few complications except one infection and one exposure of the implant.

  • PDF

Cranioplasty Using Autologous Bone versus Porous Polyethylene versus Custom-Made Titanium Mesh : A Retrospective Review of 108 Patients

  • Kim, Jun-Ki;Lee, Sang-Bok;Yang, Seo-Yeon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.737-746
    • /
    • 2018
  • Objective : The purpose of this study was to compare the cosmetic outcome and complications after cranioplasty (CP) due to three different implant materials, and analyze the mean implant survival and cumulative survival rate based on these results. Methods : We reviewed 108 patients retrospectively who underwent CP between January 2014 and November 2016. Autologous bone (AB; 45 patients) and synthetic materials with porous polyethylene (PP; 32 patients) and custom-made 3-dimensional printed titanium mesh (CT; 31 patients) were used as implants. Results : Regardless of implanted materials, more than 89.8% of the CP patients were satisfied with the cosmetic outcome. No statistically significant difference was observed among the three groups. The overall postoperative complication rates of each group were 31.1% in the AB group, 15.6% in the PP group and 3.2% in the CT group. The CT group showed lower complication rates compared with AB and PP groups (${\chi}^2$-test : AB vs. PP, p=0.34; AB vs. CT, p=0.00; PP vs. CT, p=0.03). The AB and PP groups demonstrated a higher post-CP infection rate (11.1% and 6.3%) than the CT group (3.2%). However, no significant difference in the incidence of post-CP infection was observed among the three groups. The PP and CT groups demonstrated a higher mean implant survival time and cumulative survival rate than the AB group at the last follow-up (p<0.05). Conclusion : In comparison with AB and PP, cranioplasty with CT shows benefits in terms of lower post-CP complication, less intraoperative bleeding loss, shorter operation time and in-hospital stay. The PP and CT groups showed higher implant survival time and cumulative survival rate compared with the AB group.

Augmentation of Pyriform Margin Using Porous High-Density Polyethylene Sheet In Unilateral Cleft Lip Nasal Deformity (일측성 구순열비변형에서 다공성 폴리에틸렌 판을 이용한 상악골이상구증대술)

  • Han, Ki Hwan;Kim, Jin Han;Choi, Tae Hyun;Kim, Jun Hyung;Son, Dae Gu
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2008
  • Purpose: The common deformity after the correction of unilateral cleft lip nasal deformity is nasal asymmetry, and it is caused by the hypoplasia of the pyriform aperture. To correct this, many procedures have been applied, but still many problems are present. Authors performed the inlay and onlay insertion of porous high density polyethylene sheet(1 mm thickness $Medpor{(R)}$ sheet) in the hypoplastic pyriform margin of cleft side and obtained satisfactory results. Methods: 11 cases were performed and the mean follow up period was 15.1 months. Their mean age was 23.6 years. Under general anesthesia, bilateral pyriform margin was exposed. $Medpor{(R)}$ sheets in "match stick" like shaped were inlay inserted, and kidney shaped were onlay inserted fixating with two 6 mm titanium screws. After the surgery, the results was evaluated by photogrammetric analysis. On the basal view, the distance from the subalare and labiale superius' to the transverse baseline connecting the both cheilions was measured from the cleft side and the non-cleft side. Then, the postoperative symmetry was assessed by obtaining the cleft side against the non-cleft side as proportion index, defined as lateral and medial upper lip contour index. Results: There were 2 infections. The cause was because the inserted implant was too long and thus protruded to the base of nasal cavity. The lateral upper lip contour index was from 95.49 to 103.27, and medial upper lip contour index was from 90.92 to 100.49, it was statistically increased, and thus the symmetry was improved. However clinically mild depression remained at nostril floor. Conclusion: Authors performed porous high density polyethylene sheet inlay and onlay insertion for the hypoplasia of the pyriform margin in unilateral cleft lip nasal deformity. It was found that depressed pyriform margin and upper lip were corrected effectively except for the nostril floor, for which an additional soft tissue augmentation would be necessary. The inlay insertion has risk of protrusion, thus the guideline of the use of artificial prosthesis should be observed strictly.

Removal of Silicon-associated Intraorbital Cyst with Gingival Sulcus Incision (Gingival Sulcus Incision으로 제거된 Silicon Implant 삽입 후 발생한 안와내 낭종)

  • Kwon, Yong-Seok;Kim, Myung-Hoon;Heo, Jung;Lee, Jang-Ho;Lee, Keun-Cheol;Kim, Seok-Kwun
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.29-32
    • /
    • 2009
  • Purpose: Alloplastic implants, such as $Silastic^{(R)}$, $Supramid^{(R)}$, Porous polyethylene, $Teflon^{(R)}$ have been used to prevent reherniation of orbital tissue and are known to be inert for many years, though complications are infrequently reported many years after their insertion. Complications associated with implants are infrequent, but infection, orbital hemorrhage, implant extrusion, motility restriction, migration of implant causing dacryocystitis, cystic formation have been described. The latter was known as a rare late complication of blow-out fracture repair. Methods: We report the case of a discovery of a intraorbital hemorrhagic cyst which developed after silicon implant insertion. This patient developed diplopia, unilateral proptosis, exophthalmos, vertical dystopia, ectropion 10 years after repair of blow-out fracture. In this case, orbital CT scan revealed intraorbital cyst surrounding the orbital implant. At surgery, a fibrous capsule surrounded the silicon implant and was filled with mucin pools. Results: Proptosis, diplopia, exophthalmos, ectropion, vertical dystopia were resolved after surgical removal of the cyst and implant. Conclusion: This case illustrate that it is important for us to be aware of the complication of cyst formation around the silicon implants.