• Title/Summary/Keyword: Porous microstructure

Search Result 311, Processing Time 0.028 seconds

Effect of Seed Coating Layer on the Microstructure of NaA Zeolite Separation Layer Grown on ${\alpha}$-alumina Support (종결정 코팅층이 다공성 ${\alpha}$-알루미나 지지체 표면에 성장되는 NaA 제올라이트 분리층의 미세구조에 미치는 영향)

  • Kim, Min-Ji;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2014
  • NaA zeolite/${\alpha}$-alumina composite membranes were hydrothermally synthesized at $100^{\circ}C$ for 24 hr by using nanosize seed of 100 nm in diameter and an ${\alpha}$-alumina support of $0.1{\mu}m$ in pore diameter, and then effect of seed coating layer on the microstructure of NaA zeolite separation layer was systematically investigated. In cases when nanosize seed was coated with a monolayer, increment in seed coverage induced small grained and thick NaA zeolite separation layer. On the other hand, in case when nanosize seed was coated with a multilayer, much small grained and thick separation layer was formed. It was clear that an uniform monolayer seed coating is required to grow hydrothermally a thin and defect-free NaA zeolite separation layer. In the present study, it was clearly announced that seed coating layer is a key factor to determine the microstructure of NaA zeolite layer, secondary grown on a porous support.

Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition (정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조)

  • Park, In-Yu;Im, Jong-Mo;Jung, Yeong-Geul;Shin, Dong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • The microstructural change of the $Sm_{0.5}Sr_{0.5}CoO_3$ (SSC) electrode for a cathode material of solid oxdie fuel cells (SOFCs) deposited by the electrostatic spray deposition (ESD) technique was characterized. Samarium chloride hexahydrate $(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate $(SrCl_2{\cdot}gH_2O)$, cobalt nitrate hexahydrate $(Co(No_3)_2{\cdot}6H_2O)$ as starting materials and methyl alcohol as solvent were used to make precursor solution. The suitable porous SSC films for a cathode of SOFCs were deposited on Si substrate and it is observed that the microstructure was strongly dependent on processing parameters such as deposition time, substrate temperature, and applied voltage. Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) measurement were used to investigate the microstructure and crystallinity of the SSC films. The ESD technique is shown to be an efficient method in which the SOFCs' cathode film can be fabricated with the desired phases and microstructure.

Low-temperature Sintering and Microwave Dielectric Properties of the B2O3 and CuO-added Ba(Mg1/3Nb2/3)O3 Ceramics (B2O3와 CuO가 첨가된 Ba(Mg1/3Nb2/3)O3 세라믹스의 저온소결과 마이크로파 유전특성 연구)

  • Lim, Jong-Bong;Son, Jin-Ok;Nahm, Sahn;Yoo, Myong-Jea;Lee, Woo-Sung;Kang, Nam-Kee;Lee, Hwack-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • B$_2$O$_3$ added Ba(Mg$_{1}$3/Nb$_{2}$3/)O$_3$ (BBMN) ceramics were not sintered below 900 $^{\circ}C$. However, when CuO was added to the BBMN ceramic, it was sintered even at 850 $^{\circ}C$. The amount of the $Ba_2$B$_2$O$_{5}$ second phase decreased with the addition of CuO. Therefore, the CuO additive is considered to react with the B$_2$O$_3$ inhibiting the reaction between B$_2$O$_3$ and BaO. Moreover, it is suggested that the solid solution of CuO and B$_2$O$_3$ might be responsible for the decrease of the sintering temperature of the specimens. A dense microstructure without pores was developed with the addition of a small amount of CuO. However, a porous microstructure with large pores was formed when a large amount of CuO was added. The bulk density, the dielectric constant ($\varepsilon$$_{r}$) and the Q-value increased with the addition of CuO but they decreased when a large amount of CuO was added. The variations of those properties are closely related to the variation of the microstructure. The excellent microwave dielectric properties of Qxf = 21500 GHz, $\varepsilon$$_{r}$ = 31 and temperature coefficient of resonance frequency($\tau$$_{f}$) = 21.3 ppm/$^{\circ}C$ were obtained for the Ba(Mg$_{1}$3/Nb$_{2}$3/)O$_3$+2.0 mol%B$_2$O$_3$+10.0 mol%CuO ceramic sintered at 875 $^{\circ}C$ for 2 h.h.2 h.h.

Low-Temperature Sintering and Microwave Dielectric Properties of the $B_2O_3-$ and CuO-added $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics ($B_2O_3$ 와 CuO가 첨가된 $Ba(Mg_{1/3}Nb_{2/3})O_3$ 세라믹스의 저온소결과 마이크로파 유전특성 연구)

  • Lim, Jong-Bong;Son, Jin-Ok;Nahm, Sahn;Yu, Myeong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.838-841
    • /
    • 2004
  • [ $B_2O_3$ ] added $Ba(Mg_{1/3}Nb_{2/3})O_3$ (BBMN) ceramics were not sintered below $900^{\circ}C$. However, when CuO was added to the BBMN ceramic, it was sintered even at $850^{\circ}C$. The amount of the $Ba_2B_2O_5$ second phase decreased with the addition of CuO. Therefore, the CuO additive is considered to react with the $B_2O_3$ inhibiting the reaction between $B_2O_3$ and BaO. Moreover, it is suggested that the solid solution of CuO and $B_2O_3$ might be responsible for the decrease of the sintering temperature of the specimens. A dense microstructure without pores was developed with the addition of a small amount of CuO. However, a porous microstructure with large pores was formed when a large amount of CuO was added. The bulk density the dielectric constant $({\varepsilon}_r)$ and the Q-value increased with the addition of CuO but they decreased when a large amount of CuO was added. The variations of those properties are closely related to the variation of the microstructure. The excellent microwave dielectric properties of Qxf=21500 GHz, ${\varepsilon}_r=31$ and temperature coefficient of resonance frequency$({\tau}_f)=21.3\;ppm/^{\circ}C$ were obtained for the $Ba(Mg_{1/3}Nb_{2/3})O_3+2.0\;mol%B_2O_3+10.0$ mol%CuO ceramic sintered at $875^{\circ}C$ for 2h.

  • PDF

Fabrication of Single-Crystal Silicon Microstructure by Anodic Reaction in HF Solution (HF 양극반응을 이용한 단결정 실리콘 미세구조의 제조)

  • Cho, Chan-Seob;Sim, Jun-Hwan;Lee, Seok-Soo;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.183-194
    • /
    • 1992
  • Some silicon micromechanical structures useful in sensors and actuators have been fabricated by electropolishing or porous silicon formation technique by anodic reaction in HF solution. The microstructures were lightly doped single crystal silicon and the formation was isotropic independent of crystal directions. Porous silicon layer(PSL) was formed selectively in $n^{+}$ region of $n^{+}/n$ silicon structure by anodic reaction in concentrated HF(20-48%) solution. Characteristics of the formed PSL were investigated along with change of the reaction voltage, HF concentration and the reaction time. PSL was formed only in $n^{+}$ region. The porosity of the PSL was decreased with the increase of HF concentration and independent of reaction voltage. For the case of $n/n^{+}/n$ structures, the etched surface of silicon was fairly smooth and a cusp was not found. The thickness of the microstructures was the same as that of the epitaxial n-Si layer and good uniformity. We have fabricated acceleration sensors by anodic reaction in HF solution(5 wt%) and planar technology. The process was compatible with conventional It fabrication technique. Various micromechanical structures, such as rotors of motor, gears and linear actuator, were also fabricated by the technique and examined by SEM photographs.

  • PDF

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Feasibility of Korean Rice Husk Ash as Admixture for High Strength Concrete: Particle Size Distribution, Chemical Composition and Absorption Capacity Depending on Calcination Temperature and Milling Process (고강도 콘크리트 혼화재로서 국산 왕겨재의 활용 가능성: 소성 온도와 분쇄공정 유무에 따른 입도, 성분 및 흡습 성능)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.111-117
    • /
    • 2017
  • This study examined the material properties of Korean rice husk ash (RHA) according to the manufacturing process, and evaluated the feasibility of its use as a new admixture for high strength concrete. For this purpose, its particle size distribution, chemical composition, and microstructure were analyzed under various parameters, such as calcination temperature ($400^{\circ}C$, $650^{\circ}C$, and $900^{\circ}C$) and the inclusion of a milling process. X-ray fluorescence analysis confirmed that the silicon oxide ($SiO_2$) content of RHA was improved to more than 92% with a calcination process at $650^{\circ}C$ or higher. In addition, microstructural analysis showed that the RHA calcined at $650^{\circ}C$ has a porous structure. Because of this, the absorption capacity of the RHA was improved. On the other hand, when the milling process was applied, the porous structure was destroyed; thus, the absorption capacity tended to decrease further. Based on the analysis results, it was concluded that RHA calcined at $650^{\circ}C$ can be used as an admixture for high strength concrete, which possesses functions of both a shrinkage reducing agent and a pozzolanic activator.

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

Characterization of Ni-YSZ cermet anode for SOFC prepared by glycine nitrate process (Glycine nitrate process에 의한 제조된 SOFC anode용 Ni-YSZ cermet의 물성)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Lee, Kang-Sik;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders were fabricated by glycine nitrate process. The prepared powders were sintered at $1300{\sim}1400^{\circ}C$ for 4 h in air and reduced at $1000^{\circ}C$ for 2 h in a nitrogen and hydrogen atmosphere. The microstructure, electrical conductivity, thermal expansion and mechanical properties of the Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. It was found that the open porosity, electrical conductivity, thermal expansion and bending strength of the cermets are sensitive to the volume content of Ni. The Ni-YSZ cermet containing 40 vol% Ni was ascertained to be the optimum composition. This composition offers sufficient open porosity of more than 30 %, superior electrical conductivities of 917.4 S/cm at $1000^{\circ}C$ and a moderate average thermal expansion coefficient of $12.6{\times}10^{-6}^{\circ}C^{-1}$ between room temperature and $1000^{\circ}C$.

Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process (반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가)

  • Cha, Jae-Sang;Kim, Sung-Joon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.