• Title/Summary/Keyword: Porous compact

Search Result 78, Processing Time 0.029 seconds

Fabrication of Hydroxyapatite Ceramics to Mimic the Natural Bone Structure

  • Moon, Dae-Hee;Ryu, Su-Chak
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The objective of our study was to produce an imitation bone material consisting of hydroxyapatite with a compact and spongy structure. This study shows the ideal content of $SiO_2$ and the sintering temperature to produce imitation bone that has the mechanical properties of natural bone. On the basis of our determination of the ideal conditions, a compact part was produced and its mechanical properties were tested. A compact part made of 0.5 wt% $SiO_2$ and sintered at $1350^{\circ}C$ showed excellent mechanical properties. The bioactivity of the compact part under this condition was tested, and it was found to be bioactive. The porous part was produced by controlling the powder size, and the dual structure was manufactured by combining the compact and porous parts. A water permeability test confirmed that the dual structure had an interconnected pore structure. Therefore, this dual-body structure is feasible for use in the creation of implants.

Biocompatibility of Low Modulus Porous Titanium Implants Fabricated by Spark Plasma Sintering (방전플라즈마소결법에 의해 제조된 저탄성 타이타늄 다공질체의 생체적합성 평가)

  • Song, Ho-Yeon;Kim, Young-Hee;Chang, Se-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Porous Ti compacts were fabricated by spark plasma sintering (SPS) method and their in vitro and in vivo biocompatibilities were investigated. Alkaline phosphatase (ALP) activity representing the activity of osteoblast was increased when osteoblast-like MG-63 cells were cultured on the Ti powder surface. Some genes related to cell growth were over-expressed through microarray analysis. The porous Ti compact with 32.2% of porosity was implanted in the subcutaneous tissue of rats to confirm in vivo cytotoxicity. 12 weeks post-operation, outer surface and inside the porous body was fully filled with fibrous tissue and the formation of new blood vessels were observed. No inflammatory response was confirmed. To investigate the osteoinduction, porous Ti compact was implanted in the femur of NZW rabbits for 4 months. Active in-growth of new bone from the surrounded compact bone was observed around the porous body. From the results, The porous Ti compacts fabricated by spark plasma sintering might be available for the application of the stem part of artificial hip joint.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.

Fully Porous and Porous Surfaced Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering: (1) Fabrication Method and Fundamental Characteristics (전기방전소결에 의해 제조된 다공성 및 다공성 표면을 갖는 Ti-6Al-4V 임플란트 : (1) 제조방법 및 기본적 특성)

  • Hyun, C. Y.;Huh, J. K.;Lee, W. H.
    • Journal of Powder Materials
    • /
    • v.12 no.5 s.52
    • /
    • pp.325-331
    • /
    • 2005
  • Implant prototypes with various porosities were fabricated by electro-discharge-sintering of atomized spherical Ti-6Al-4V powders. Single pulse of 0.75 to 2.0 kJ/0.7 g-powder, using 150, 300, and $450{\mu}F$ capacitors was applied to produce a fully porous and porous surfaced implant compact. The solid core formed in the center of the compact after discharge was composed of acicular ${\alpha}+{\beta}$ grains and porous layer consisted of particles connected in three dimensions by necks. The solid core and neck sizes increased with an increase in input energy and capacitance. On the other hand, pore volume decreased with increased capacitance and input energy due to the formation of solid core. Capacitance and input energy are the only controllable discharge parameters even though the heat generated during a discharge is the unique parameter that determines the porosity of compact. It is known that electro-discharge-sintering of spherical Ti-6Al-4V powders can efficiently produce fully-porous and porous surfaced Ti-6Al-4V implants with various porosities in a short time less then 400 isec by manipulating the discharging condition such as input energy and capacitance including powder size.

ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES

  • Luukkainen, Jouni
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.23-76
    • /
    • 1998
  • We prove that a non-empty separable metrizable space X admits a totally bounded metric for which the metric dimension of X in Assouad's sense equals the topological dimension of X, which leads to a characterization for the latter. We also give a characterization based on this Assouad dimension for the demension (embedding dimension) of a compact set in a Euclidean space. We discuss Assouad dimension and these results in connection with porous sets and measures with the doubling property. The elementary properties of Assouad dimension are proved in an appendix.

  • PDF

A Study of Electro-Discharge-Sintering of Ti-6Al-4V Spherical Powders Doped with Hydroxyapatite by Spex Milling and Its Consolidation Characteristics (Hydroxyapatite가 도핑된 Ti-6Al-4V 구형 분말의 전기방전 소결 및 소결체 특성에 관한 연구)

  • Cho, Y.J.;Kim, Y.H.;Jo, Y.H.;Kim, M.J.;Kim, H.S.;Kim, S.W.;Park, J.H.;Lee, W.H.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.376-381
    • /
    • 2013
  • Spherical Ti-6Al-4V powders in the size range of 250 and 300 ${\mu}m$ were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.

Optimum Design of a Compact Heat Exchanger with Foam Metal Insertion (발포금속을 삽입한 밀집형 열교환기 최적 설계)

  • 이대영;진재식;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.612-620
    • /
    • 2001
  • The optimum design of a heat exchanger with porous media insertion is studied in this paper. It is considered that the aluminum foam metal is inserted in a flat plate channel and air flows through it. The influence of the microstructure of the foam metal on the pressure drop and heat transfer is investigated utilizing previous analytical results and existing correlation equations. Design parameters are identified as the unit-cell size and the ligament thickness of the porous medium, and their effects are examined. The results show that there exists optimum microstructure of the porous media maximizing heat transfer with a constant pressure drop. When the increase in the pressure drop is within a practically acceptable range, the increase in the heat transfer is dominated by the increase in the heat transfer area due to the porous medium insertion. Consequently, among the porous media with a constant pressure drop, the heat transfer is maximized with a microstructure with maximum specific surface area.

  • PDF

High-Contrast Electrochromism of Porous Tungsten Oxide Thin Films Prepared by Electrodeposition (전기증착법으로 제조된 다공성 텅스텐 산화물의 고대비 전기변색 특성)

  • Park, Sung-Hyeok;Mo, Ho-Jin;Lim, Jae-Keun;Kim, Sang-Gwon;Choi, Jae-Hyo;Lee, Seung-Hyun;Jang, Se-Hwa;Cha, Kyung-Ho;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.7-11
    • /
    • 2018
  • In this study, we synthesize tungsten oxide thin films by electrodeposition and characterize their electrochromic properties. Depending on the deposition modes, compact and porous tungsten oxide films are fabricated on a transparent indium tin oxide (ITO) substrate. The morphology and crystal structure of the electrodeposited tungsten oxide thin films are investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray photoelectron spectroscopy is employed to verify the chemical composition and the oxidation state of the films. Compared to the compact tungsten oxides, the porous films show superior electrochemical activities with higher reversibility during electrochemical reactions. Furthermore, they exhibit very high color contrast (97.0%) and switching speed (3.1 and 3.2 s). The outstanding electrochromic performances of the porous tungsten oxide thin films are mainly attributed to the porous structure, which facilitates ion intercalation/deintercalation during electrochemical reactions.

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF