DOI QR코드

DOI QR Code

High-Contrast Electrochromism of Porous Tungsten Oxide Thin Films Prepared by Electrodeposition

전기증착법으로 제조된 다공성 텅스텐 산화물의 고대비 전기변색 특성

  • Park, Sung-Hyeok (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Mo, Ho-Jin (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Lim, Jae-Keun (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Sang-Gwon (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Choi, Jae-Hyo (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Seung-Hyun (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Jang, Se-Hwa (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Cha, Kyung-Ho (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
  • 박성혁 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 모호진 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 임재근 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김상권 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 최재효 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이승현 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 장세화 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 차경호 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2018.02.05
  • Accepted : 2018.02.12
  • Published : 2018.02.28

Abstract

In this study, we synthesize tungsten oxide thin films by electrodeposition and characterize their electrochromic properties. Depending on the deposition modes, compact and porous tungsten oxide films are fabricated on a transparent indium tin oxide (ITO) substrate. The morphology and crystal structure of the electrodeposited tungsten oxide thin films are investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray photoelectron spectroscopy is employed to verify the chemical composition and the oxidation state of the films. Compared to the compact tungsten oxides, the porous films show superior electrochemical activities with higher reversibility during electrochemical reactions. Furthermore, they exhibit very high color contrast (97.0%) and switching speed (3.1 and 3.2 s). The outstanding electrochromic performances of the porous tungsten oxide thin films are mainly attributed to the porous structure, which facilitates ion intercalation/deintercalation during electrochemical reactions.

Keywords

References

  1. C. G. Granqvist: Sol. Energy Mater. Sol. Cells, 60 (2000) 201. https://doi.org/10.1016/S0927-0248(99)00088-4
  2. C. G. Granqvist: Thin Solid Films, 564 (2014) 1.
  3. P. M. Beaujuge and J. R. Reynolds: Chem. Rev., 110 (2010) 268.
  4. R. J. Mortimer: Annu. Rev. Mater. Res., 41 (2011) 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  5. R. Baetens, B. P. Jelle and A. Gustavsen: Sol. Energy Mater. Sol. Cells, 94 (2010) 87. https://doi.org/10.1016/j.solmat.2009.08.021
  6. R. J. Mortimer, A. L. Dyer and J. R. Reynolds: Displays, 27 (2006) 2. https://doi.org/10.1016/j.displa.2005.03.003
  7. S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi and N. Kobayashi: Adv. Mater., 24 (2012) OP122.
  8. S. K. Deb: Appl. Opt., 8 (1969) 192. https://doi.org/10.1364/AO.8.S1.000192
  9. S. Cong, Y. Tian, Q. Li, Z. Zhao and F. Geng: Adv. Mater., 26 (2014) 4260. https://doi.org/10.1002/adma.201400447
  10. A. Subrahmanyam and A. Karuppasamy: Sol. Energy Mater. Sol. Cells, 91 (2007) 266. https://doi.org/10.1016/j.solmat.2006.09.005
  11. C. M. White, D. T. Gillaspie, E. Whitney, S. H. Lee and A. C. Dillon: Thin Solid Films, 517 (2009) 3596. https://doi.org/10.1016/j.tsf.2009.01.033
  12. S. M. Park, Y. C. Nah and C. Nam: J. Nanosci. Nanotechnol., 17 (2017) 7719. https://doi.org/10.1166/jnn.2017.14824
  13. S. Badilescu and P. V. Ashrit: Solid State Ionics, 158 (2003) 187. https://doi.org/10.1016/S0167-2738(02)00764-6
  14. T. Zhu, M. N. Chong and E. S. Chan: ChemSusChem, 7 (2014) 2974. https://doi.org/10.1002/cssc.201402089
  15. M. Deepa, A. K. Srivastava, S. Singh and S. A. Agnihotry: J. Mater. Res., 19 (2004) 2576. https://doi.org/10.1557/JMR.2004.0336
  16. K. Lee, A. Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385. https://doi.org/10.1021/cr500061m
  17. E. Khoo, P. S. Lee and J. Ma: J. Eur. Ceram. Soc., 30 (2010) 1139. https://doi.org/10.1016/j.jeurceramsoc.2009.05.014
  18. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo and D. Y. Kim: Electrochim. Acta, 51 (2006) 3814. https://doi.org/10.1016/j.electacta.2005.10.047
  19. G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A. Lee-Sie Eh, K. Qian and P. S. Lee: Chem. Sci., 7 (2016) 1373. https://doi.org/10.1039/C5SC03727A
  20. Y. C. Nah, S. S. Kim, J. H. Park and D. Y. Kim: Electrochem. Solid-State Lett., 10 (2007) J12. https://doi.org/10.1149/1.2382261
  21. G. P. Halada and C. R. Clayton: J. Vac. Sci. Technol. A, 11 (1993) 2342.
  22. S. K. Deb: Sol. Energy Mater. Sol. Cells, 92 (2008) 245. https://doi.org/10.1016/j.solmat.2007.01.026