• 제목/요약/키워드: Porous coating layer

검색결과 132건 처리시간 0.032초

저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동 (Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

Preparation and Characterization of New Immunoprotecting Membrane Coated with Amphiphilic Multiblock Copolymer

  • Kang, Han-Chang;Bae, You-Han
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.67-74
    • /
    • 2002
  • New immunoprotecting membranes were prepared by spin coating the amphiphilic random multiblock copolymers of poly(ethylene glycol) (PEG) and poly(tetramethylene ether glycol) (PTMEG) or poly(dimethyl siloxane) (PDMS) on porous Durapore(R) membrane. The copolymer coating was intended to make a biocompatible, immunoprotecting diffusional barrier and the supporting porous substrate was for mechanical stability and processability. By filling Durapore(R) membrane pores with water, the penetration of coating solution into the pores was minimized during the spin coating process. A single coating process produced a completely covered thin surface layer (~1 ${\mu}{\textrm}{m}$ in thickness) on the porous substrate membrane. The permselectivity of the coated layer was influenced by PEG block length, polymer composition, and thickness of the coating layer. A composite membrane with the coating layer prepared with PEG 2 K/PTMEG 2 K block copolymer showed that its molecular weight cut-of fat any 40 based on dextran was close to the molecular size of IgG (Mw = 150 kDa). However, IgG permeation was detected from protein permeation test, while glucose oxidase (Mw = 186 kDa) was not permeable through the coated membrane.

EFFECT OF COATING COMPOSITION IN DOUBLE COATING ON THE PENETRATION OF FINE PARTICLES INTO SUBSTRATE

  • Kim, Byeong-Soo;Douglas W. Bousfield
    • 한국인쇄학회지
    • /
    • 제18권1호
    • /
    • pp.1-11
    • /
    • 2000
  • The influence of the first coating layer on the properties of the second coating layer is reported. For various model coating composition, ratios of first and second coating weights are used to generate coating layers. The void volume, pore size distribution and light scatter coefficient of the coatings are measured. In some cases, the fine material from the second layer seems to penetrate the first layer to reduce the void fraction of the total system. Rapid setting coating, for example thin layers on porous first layer tends to generate porous coating layers.

  • PDF

Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화 (Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성 (Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation)

  • 주재훈;김동현;정찬영;이정훈
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

도공층 구조 및 도공지의 인쇄적성에 관한 연구(II) - 라텍스 이온기가 도공층 구조에 미치는 영향 - (Studies on the Coating Structure and Printability of Coated Paper(II) - Effect of Ionic Groups of Latices on Coating Structure -)

  • 이용규;박규재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권4호
    • /
    • pp.10-16
    • /
    • 1997
  • This study was carried out to improve coating structure by controlling the electrostatic interaction of coating components and by changing the coating structure of coated paper prepared with amphoteric and anionic latices. The results indicated that amphoteric latex copolymerized with carboxylic and amine groups had stronger interaction with other coating components than anionic latex with branched carboxylic group by controlling pH. These properties of amphoteric latex showed positive effects on viscosity rheology, and supernatant sediment of coating color. The coated paper using amphoteric latex had also produced more porous and smoother coverage of the coating layer than that using anionic latex. This porous and smooth coating layer showed better optical properties and printability than those of anionic latex such as opacity, porosity, ink set-off, and wet ink receptivity.

  • PDF

확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구 (Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface)

  • 이민수;장영수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동 (Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics)

  • 김상겸;김태우;김도경;이기성
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구 (Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells)

  • 이은주;이수홍
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구 (Investigation of the crystalline silicon solar cells with porous silicon layer)

  • 이은주;이일형;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF