• Title/Summary/Keyword: Porous ceramic plate

Search Result 27, Processing Time 0.025 seconds

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF

Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner (다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구)

  • Cho, J.D.;Kang, J.H.;Lim, I.G.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Heat and Mass Transfer in Highly Porous Media (고 다공성 물질에서 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.685-693
    • /
    • 1990
  • The heat transfer coefficients were calculated numerically to see the effects of radiation around the porous medium put on the flat plate at a distance from the leading edge of flat plate for the two-dimensional laminar flows. To verify the analytical model developed and invoke the heat/mass transfer analogy, an experiment was carried out using naphthalene sublimation technique. From the effects of the wake, Sherwood number is maximum around the region where the porous medium is attached. The theoretical results correspond well with the experimental results at small Darcy number. Permeability of ceramic blocks used for experiment was also measured and the Forchheimer equation is applicable in our measurement range.

Combustion Characteristic and Stability of Flat Premixed Ceramic Burner with Different Porous Baffle Plates (평판 예혼합 세라믹 버너의 분포판 변화에 따른 연소화염특성과 안정성 분석)

  • Lee, Jae-Young;Lee, Pil-Hyong;Park, Chang-Soo;Park, Bong-Il;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • Porous metal plates (Metal fiber, muti-hole metal plate) using mainly in surface burner are known to have a corrosion and durability problem under high temperature condition. In this study, premixed flat flame with perforated ceramic tile of more durable cordierite material was examined with respect to combustion stability and emission. The flat premixed ceramic burner consists of perforated ceramic tile and various type of baffle plates to form stable surface flame. The results show that most stable flat flame is generated using baffle plate with open ratio of 0.193. In downward flat flame mode which is widely used in condensing boiler, CO is measured below 50ppm from equivalence ratio 0.755 to 0.765 and $NO_X$ is measured below 12ppm from equivalence ratio 0.75 to 0.79. It is also found that the range of blue flame in flame stability curve becomes wider with increasing heat capacity.

  • PDF

Fabrication and Mechanical Properties of Porous Silicon Carbide Ceramics from Silicon and Carbon Mixture (실리콘과 카본을 이용한 다공질 탄화규소의 제조와 기계적 특성)

  • Kim, Jong-Chan;Lee, Eun Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • Silicon, carbon, and B4C powders were used as raw materials for the fabrication of porous SiC. ${\beta}$-SiC was synthesized at $1500^{\circ}C$ in an Ar atmosphere from a silicon and carbon mixture. The synthesized powders were pressed into disk shapes and then heated at $2100^{\circ}C$. ${\beta}$-SiC particles transformed to ${\alpha}$-SiC at over $1900^{\circ}C$, and rapid grain growth of ${\alpha}$-SiC subsequently occurred and a porous structure with elongated plate-type grains was formed. The mechanism of this rapid grain growth is thought to be an evaporation-condensation reaction. The mechanical properties of the fabricated porous SiC were investigated and discussed.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer (열가소성 고분자를 이용한 다공질 알루미나의 제조)

  • 이상진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.513-517
    • /
    • 2004
  • Porous alumina ceramics with aligned plate-shaped pores were fabricated by using thermoplastic microsphere in order to show the anisotropy in thermal conductivity. The mixed powder of alumina and microsphere was pressed under 15 MPa till 20$0^{\circ}C$ to deform polymer into platelet-shape and sintered at 1,00$0^{\circ}C$ for 1 h. The sintered specimen with 10 wt% microsphere has 45.3% porosity and the bending strength of 44 MPa. The microstructural investigation confirmed the pore structure of platelet-shape, the thermal conductivities for vertical and parallel directions are 3.803 W/mK and 7.818 W/mK, respectively, the ratio between two directions exceeds 2.

Neutral surface-based static and free vibration analysis of functionally graded porous plates

  • J.R. Cho
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.431-440
    • /
    • 2023
  • The functionally graded (FG) porous plates are usually characterized by the non-symmetric elastic modulus distribution through the thickness so that the plate neutral surface does not coincide with the mid-surface. Nevertheless, the conventional analysis models were mostly based on the plate mid-surface so that the accuracy of resulting numerical results is questionable. In this context, this paper presents the neutral surface-based static and free vibration analysis of FG porous plates and investigates the differences between the mid- and neutral surface-based analysis models. The neutral surface-based numerical method is formulated using the (3,3,2) hierarchical model and approximated by the last introduced natural element method (NEM). The volume fractions of metal and ceramic are expressed by the power-law function and the cosine-type porosity distributions are considered. The proposed numerical method is demonstrated through the benchmark experiment, and the differences between two analysis models are parametrically investigated with respect to the thickness-wise material and porosity distributions. It is found from the numerical results that the difference cannot be negligible when the material and porosity distributions are remarkably biased in the thickness direction.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.