• Title/Summary/Keyword: Porous Thin Film

Search Result 201, Processing Time 0.033 seconds

A study on the Initial Nanopore Formation in the Calix Arene Based Porogen Templated Porous Thin Film (칼릭스아렌 포로젠을 이용한 다공성 박막의 초기 나노기공 형성과정에 관한 연구)

  • Kim, Do-Hun;Yim, Jin-Heong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.669-675
    • /
    • 2011
  • Fourier Transform Infrared Spectroscopy and in-situ Position Annihilation Lifetime Spectroscopy(PALS) analysis of hybrid film, which consist of silsesquioxane(SSQ) and 4-tert-butyl calix[4]arene-O,O',O",O'"-tetraacetic acid tetraethyl ester(CA[4]) have been investigated in order to understand initial formation of nanopore in the next generation porous low-k dielectrics(k < 2.0). SSQ/CA[4] can provide effective homogeneous thin film having porous structure. The porogen decomposition behavior were completely different in the two kinds of SSQ/CA[4] based hybrid film (i.e. SSQ/CA[4] 10 and SSQ/CA[4] 20%). Relatively small pores(1.5 nm) come from dispersion of uni-molecular CA[4] in the SSQ matrix have been generated at $300^{\circ}C$, while mesopores(2.5~3.0 nm) induced from self assembled CA[4] have been generated at $250^{\circ}C$. It might be due to highly interconnected structure of SSQ/CA[4] 20% hybrid thin film resulting in facile evacuating of decomposed fragment of CA[4] molecule.

The Blue and Red Luminescences from Ambient Air Aged Porous Silicon

  • Chang, S.S;Yoon, S.O;Choi, G.J;Kawakami, Y;Sakai, A
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • This paper reports on photoluminescence (PL), luminescence decay curves, and compositional analysis of porous silicon(PS) which is aged under air ambient by Fourier transform infrared vibrational spectroscopy (FTIR) and by Auger electron spectroscopy (AES). Porous silicos which has been aged under air ambient yields two PL band structures, i.e. blue/violet PL and red PL. The evolution of a blue/violet band is pronounced, especially for thin PS film which is prepared in dilute HF solution. The blue/violet PL band has been observed initially to increrase rapidly with aging, then saturated with further atmospheric aging. The ambient air aged PS exhibits a fast decay time of sub-nanosecond at room temperature and shows appreciably faster decay time than that at 20K. Atmospheric aging of this thin blue/violet luminescing PS yield non-stoichiometric oxide judging from the vibrational spectra of Si-O and AES analysis.

  • PDF

Influences of Electrochemical Vapor Deposition Conditions on Growth Rate ad Characteristics of YSZ Thin films(II) (YSZ 박막의 성장속도와 특성에 미치는 전기화학증착의 조건의 영향(II))

  • 박동원;전치훈;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates. Y2O3 mol% of thin film was linearly increased with yttrium mole fraction of vapor phase. As yttrium mole fraction(Zyc13=0.18) increased dense and faceted thin films were enhanced. However as the yttrium mole fraction (Zyc13=0.04) decreased porous thin films with monoclinnic phase prevailed. With increasing pressure difference of substrate sides penetration depth decreased porosity and amount of monoclinic phase in the films increased.

  • PDF

Photocatalytic Efficiency of $TiO_2$Thin Films by Spin-coating (Spin-coating법에 의한 $TiO_2$의 광촉매 효율)

  • Kim, Beom-Jun;Byeon, Dong-Jin;Lee, Jung-Gi;Park, Dal-Geun
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.264-269
    • /
    • 2000
  • TiO$_2$thin films were prepared on the glass by a conventional spin coating method with $TiO_2$ sol(30wt%, anatase). The thickness of the thin films were controlled by the number of coating cycles: one cycle is composed of spin coating, drying, and heating process. The reaction rate of the film was obtained by the photodecomposition of gaseous benzene under 0.44 and 2.0mW/$\textrm{cm}^2$ UV light on the film surface. For an incident UV light intensity of 0.44mW/$\textrm{cm}^2$, the reaction rate was increased with the thickness of the film, caused by extent of surface area, but there was no change over the thickness of about 4$\mu\textrm{m}$. The porous $TiO_2$ thin film has comparatively vast effective surface area, which under relatively high-intensity UV illumination causes the reaction rate to be controlled by the film thickness.

  • PDF

Light emitting thin film structures based on organic luminophors embedded in porous alumina matrixes

  • Gorokh, G.G.;Labunov, V.A.;Smirnov, A.G.;Kukhta, A.V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.315-318
    • /
    • 2002
  • Light emitting thin film structures based on organic luminophors embedded in porous alumina matrixes are discussing. The optical properties of the luminophors in a matrix differ greatly from their properties in usual crystalline state or in a solution and they depend on the concentration of luminophors molecules of up to 10-2 mol/l. Successful experiments on filling of pores with organic luminophors and the investigation of their luminescent and optical properties were carried out.

  • PDF

Preparation of Conductive $TiO_2$ thin film by Electrospray Depositon (Electrospray를 통한 전도성 박막의 제조)

  • Lee, Kyung-Hwa;Kim, Han-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.381-382
    • /
    • 2008
  • $TiO_2$ colloidal solution was electrosprayed for preparing a conductive thin film with high quality. Electrospray is a technique of liquid dispersion electrically and a good method of manufacturing nanoparticle, nanofiber, porous membrane, film preparation and coating. Water and ethanol were used as solvents and their mixing ratio was varied for studying the influence of solvent volatile on nanoparticle dispersion. Various nozzles to control the thru-put of solutions.were examined. Integrated analytical method and scanning electron microscope were used to analyze integrity and microscopic images.

  • PDF

Analysis of Surface Properties of PVC Thin Film according to Addition of Non-solvent to PVC-THF Solution (PVC-THF 용액에 비용매 첨가에 따른 PVC 박막의 표면 특성 분석)

  • Lee, Seung Gyu;Moon, Je Cheol;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2022
  • The effect of the addition of a polyvinylchloride (PVC) non-solvent to a PVC-tetrahydrofuran (THF) solution on the surface properties of the PVC thin film was analyzed. The non-solvents used were composed of alcohol-based and non-alcoholic ones. Surface morphologies of PVC thin films according to the addition of the non-solvent were compared. In addition, the hydrophobic properties relying on the surface characteristics were compared. The micro-bubbles generated in the preparation of PVC-THF solution affected the surface morphology of the thin film. In order to implement the normal surface physical properties of the coating thin film at the relatively high concentration of PVC-THF solution, the selection of appropriate drying method was required. When an alcohol-based non-solvent was added, a PVC thin film having a granular porous surface was obtained and exhibited super hydrophobic properties. The volume ratio of the PVC-THF solution to the non-solvent affects the surface shape of the coating thin film. The larger the amount of non-solvent was added, the more advantageous it was to form a super hydrophobic PVC thin film.

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film I (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 I)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.668-673
    • /
    • 2013
  • In this study, specimens with nano-sized porous thin films were manufactured by injecting fluorescence solution into the pores. We intended to find out the difference of the fluorescence intensity in each region of the specimen through an experimental apparatus that makes a temperature field. Before conducting experiments, the optimized manufacturing conditions were determined by analysis of all parameters that influence the emission intensity, and the experiments were carried out with the specimens produced in the optimized conditions. Then, the calibration curves of the fluorescence intensity versus temperature were performed by taking the intensity distributions from the specimen in various temperature fields. The surfaces of specimens were coated with Rhodamine-B (Rh-B) fluorescent dye and measured based on the fluorescence intensity. Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescence dye was absorbed into these porous thin films.

Photocatalytic Properties of WO3 Thin Films Prepared by Electrodeposition Method (전기증착법으로 제조된 WO3 박막의 광촉매 특성)

  • Kang, Kwang-Mo;Jeong, Ji-Hye;Lee, Ga-In;Im, Jae-Min;Cheon, Hyun-Jeong;Kim, Deok-Hyeon;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Tungsten trioxide ($WO_3$) is a promising candidate as a photocatalyst because of its outstanding electrical and optical properties. In this study, we prepare $WO_3$ thin films by electrodeposition and characterize the photocatalytic degradation of methylene blue using these films. Depending on the voltage conditions (static and pulse), compact and porous $WO_3$ films are fabricated on a transparent ITO/glass substrate. The morphology and crystal structure of electrodeposited $WO_3$ thin films are investigated by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. An application of static voltage during electrodeposition yields a compact layer of $WO_3$, whereas a highly porous morphology with nanoflakes is produced by a pulse voltage process. Compared to the compact film, the porous $WO_3$ thin film shows better photocatalytic activities. Furthermore, a much higher reaction rate of degradation of methylene blue can be achieved after post-annealing of $WO_3$ thin films.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.