• Title/Summary/Keyword: Porous Sheet

Search Result 69, Processing Time 0.023 seconds

Production method for porous polypropylene sheet (발포 폴리프로필렌 시트의 제조방법)

  • Yu, Ho-Tak;Lee, Kee-Sun;Kim, Kee-Sun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.677-679
    • /
    • 2012
  • 다공질 폴리프로필렌 시트는 압전센서 및 VOC 발생이 적은 자동차 내장소재로 주목을 받고 있으며, 특히 경량화를 위한 다공질 폴리프로필렌 시트의 가공기술이 중요하다. 이 연구에서는 기존의 가교형 폴리프로필렌 시트를 활용하여 압출과 사출이 아닌 압연공정과 열처리 발포공정을 접목하였다. 발포를 위한 마스터배치와 폴리프로필렌의 혼합으로 제조된 두께 1mm의 폴리프로필렌시트를 $200^{\circ}C$온도에서 온간압연공정에 의해 0.1-0.2mm 두께로 제조하고, 이를 $200^{\circ}C$에서 5분동안 발포함으로써 기공률 65%의 시트를 제조함으로써 저가의 압전센서 소재로 활용 가능성을 확인하였다.

  • PDF

State-of-the-art of the multi-scale analysis of advanced composite materials by homogenization method (일본내 연구동향 (6편중 제4편))

  • Takano, Naoki
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 2002
  • To study numerically the mechanical behaviors of advanced composite materials considering the microscopic phenomena as well as the macroscopic properties and behaviors, a multi-scale modeling and analysis by the mathematical homogenization method with the help of the finite element method(FEM) are reviewed. The hierarchical modeling strategy and the formulation are briefly described first to give some idea of the multi-scale framework. The latter half of this article focuses on the verification of the multi-scale analysis by the homogenization method in its applications to real advanced materials. The first example is the verification of the predicted macroscopic(homogenized) properties based on the microstructure of porous ceramics. In spite of the complexity of the random microstructure, the error between the predicted and the measured values was only 1%. Next, two applications to the process simulation of fiber reinforced polymer matrix composites are presented. The permeability characteristics are evaluated for sheared weave fabrics for resin transfer molding(RTM) simulation, and the thermoforming of FRTP sheet is analyzed considering the large deformation of the knit structure during the deep-draw forming was verified by comparison with the experimental results.

Porous Polypropylene Sheet produced by Hot Pressing (열간가압성형에 의한 다공질 폴리프로필렌 시트제조)

  • Cho, Hyun-Chul;Lee, Ki-Sun;Kim, Key-Sun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1137-1140
    • /
    • 2010
  • PP에 용융온도 조절을 위한 첨가제로 ZnO와 ADCA를 첨가하여 발포제의 온도를 약 $165^{\circ}C$로 조절 하였다. 이러한 혼합 분말은 $178{\sim}208^{\circ}C$ 온도범위의 금형에서 약 3분 동안 가압성형 되었다. $198^{\circ}C$, 발포제 1.0wt%에서 비교적 우수한 기공 분포를 나타냈다. 그 보다 낮은 온도에서는 기공형성이 충분치 않았고, 그 이상에서는 기공이 불균일하게 분포하여 측면이나 상부에 밀집되면서 더욱 큰 기공을 형성하는 경향을 보였다. 이렇게 제조된 PP 시트의 밀도는 0.518g/cc이었고, 기공률로 약 47%에 해당하였다.

  • PDF

Insulation Performance Evaluation for Waterproofing Materials that Uses Air Cap Sheet (에어캡시트를 이용한 단열 보완형 방수공법의 단열성 평가)

  • Ma, Seung Jae;Lee, Jong Yong;Choi, Sung Min;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.175-176
    • /
    • 2015
  • Insulation in buildings are one of the crucial factors for energy reduction, and depending on the application areas and properties of the insulation requirements, various different types of insulation materials are being developed, produced, and used. Amongst these is the aircaps often used as packing materials. Because of their porous nature, they are highly efficient in preventing heat and are consequently used overseas often as insulation materials and as part of cold water concrete insulation curing method. This paper studies the recently developed usage of aircaps in waterproofing materials and evaluated their performance as supplementary insulation materials.

  • PDF

Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature (ALD Pt 나노입자의 고온 거동에 대한 연구)

  • An, Jihwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.691-695
    • /
    • 2016
  • This paper covers the investigation of the microscale behavior of Pt nanostrucures fabricated by atomic layer deposition (ALD) at elevated temperature. Nanoparticles are fabricated at up to 70 ALD cycles, while congruent porous nanostructures are observed at > 90 ALD cycles. The areal density of the ALD Pt nanostructure on top of the SiO2 substrate was as high as 98% even after annealing at $450^{\circ}C$ for 1hr. The sheet resistance of the ALD Pt nanostructure dramatically increased when the areal density of the nanostructure decreased below 85 - 89% due to coarsening at elevated temperature.

A Study on Improvement of Durability for Run-out Table Roller with Hot Rolling by Porous Self-fluxing Alloy Coating (다공질 자용성 합금 피복에 의한 열간 압연용 런-아웃 테이블 롤러의 내구성 향상에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-285
    • /
    • 2012
  • The objective of this research is to develop the coating technique by a porous self-fluxing alloy for improving the mechanical properties of run-out table roller surface with the hot rolling. To enhance the durability of run-out table roller with the hot rolling, the high hardness of roller surface should be maintained at high temperatures, and the improvement of wear resistance, corrosion resistance, heat resistance, burn resistance and adhesion resistance should be maintained. In order to be able to transport reliably a hot rolled steel sheet, also, the appropriate friction coefficient on the roller surface should be maintained and the slip between roller and steel should not occur. In this study, the wear resistance of roller increases after the self-fluxing alloy is changed to a cermet by adding the tungsten carbide(WC), and the coefficient of friction increases and the ability of grip is improved because the porosities are made by coating with fine iron powder on the roller surface. As a result, it is found that the ability of grip between the steel and the roller coated by a porous self-fluxing alloy contained to 5 ~ 10 wt% of Fe in the coating layer is improved compared to the roller coated by Ni-Cr. This is because the porosities are made after Fe contained in the roller is partially alloyed by heating with a furnace in the fusing process and the rest is eliminated by oxidation and dissolution.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.

Gas Permeation Characteristics of Silica Membrane Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의해 합성한 실리카 막의 기체 투과 특성)

  • Lee Kew-Ho;Youn Min-Young;Park Sang-Jin;Lee Dong-Wook;Sea Bongkuk
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.105-113
    • /
    • 2005
  • Silica membranes were prepared on a porous metal sheet by ultrasonic spray pyrolysis method for gas separation at high temperatures. In order to improve the permselectivity, silica was deposited in the sol-gel derived $silica/\gamma-alumina$ intermediate layer by pyrolysis of tetraethyl orthosilicate (TEOS) at 873 K. The pyrolysis with forced cross flow through the porous wall of the support was very effective in plugging mesopores, Knudsen diffusion regime, that were left unplugged in the membranes. At permeation temperature of 523 K, the silica/alumina composite membrane showed $H_2/N_2$ and water/methanol selectivity as high as 17 and 16, respectively, by molecular sieve effect.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

Fabrication and Transfer of Laser Induced Graphene (LIG) Electrode for Flexible Substrate-based Electrochemical Sensor Applicatins (유연 기판 기반 전기화학 센서 응용을 위한 레이저 유도 그래핀 전극 제작 및 전사 연구)

  • Kim, Jeong Dae;Kim, Taeheon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.406-412
    • /
    • 2018
  • This paper describes the fabrication process of laser induced graphene (LIG) and its transfer method on to a flexible and stretchable PDMS substrate. By irradiating CO2 laser on a polyimide(PI) film surface, a localized high temperature is created, resulting in a three-dimensional porous graphene network structure with good conductivity. This LIG electrode is relatively easy to fabricate and since it is very weak the LIG electrode was transferred to a flexible PDMS substrate to increase the sturdiness as well as possible use in flexible applications. Sheet resistance, thickness, and electrochemical activity of the fabricated in-situ LIG electrodes have been examined and compared with the LIG electrodes after transferring to PDMS elastomer. The properties of the LIG electrodes were also examined depending on the $CO_2$ laser power. As the irradiated laser power increased, the LIG electrode resistance decreases and the LIG electrode thickness increased. At 4.8 W of laser power, the average sheet resistance and thickness of the fabricated LIG electrodes were approximately $31.7{\Omega}/{\Box}$ and $62.67{\mu}m$, respectively. Moreover, the electrochemical activity of the fabricated LIG electrode at 4.8 W of laser power showed a high oxidation current of $28.2{\mu}A$ after transferring to PDMS.