• Title/Summary/Keyword: Porous Model

Search Result 745, Processing Time 0.027 seconds

The Buoyancy Effects in Horizontal Porous Layers with Vortical Through Flow (수직 투과 흐름이 있는 수평 다공질 유체층에서의 부력 효과)

  • Kim, Min-Chan;Kim, Sin;Yoon, Do-Young;Kim, Sae-Hoon
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.266-271
    • /
    • 2001
  • Buoyancy-driven natural convection is analysed by employing a linear stability theory in hori-zontal porous media with net through flow. Darcy's law is used to model the flow characteristics in porous media. Bated on the results of linear stability analysis, a heat transfer correlation was obtained by employing weakly nonlinear analysis. As the net through flow increases, the system becomes more stable and the effect of the Darcy-Rayleigh number on the Nusselt number decreases.

  • PDF

Numerical Calculation of High Pressure Compaction for Porous Materials (높은 압력을 받는 다공질재료의 압축에 대한 수치해석적 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1987
  • A practical constitutive equation with sufficient generality is proposed for porous materials to deal with plastic pore compaction and pore related strain-hardening. With an application of this proposed model, finite element calculations are executed for the compaction of a porous material. Results show powerful potential of finite element method in a quantitative investigation of the process of the compaction. Special attention is given to the process of unloading during which the development of tensile principal stress may lead to phenomena such as lamination and end-capping.

  • PDF

Finite Difference Analysis of Dynamic Characteristics of Negative Pressure Rectangular Porous Gas Bearings (음압 직각 다공질 공기베어링의 동특성에 관한 유한차분 해석)

  • Hwang Pyung;Khan Polina;Lee Chun-Moo;Kim Eun-Hyo
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • The numerical analysis of the negative pressure porous gas bearings is presented. The pressure distribution is calculated using the finite difference method. The Reynolds equation and Darcy's equation are solved simultaneously. The air bearing stiffness and damping are evaluated using the perturbation method. Rectangular uniform grid is employed to model the bearing. The vacuum preloading is considered. The pressure in the vacuum pocket is assumed to be a constant negative pressure. The total load, stiffness, damping and flow rate are calculated fur several geometrical configurations and several values of negative pressure. It is found that too large vacuum pocket can result in negative total force.

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects

  • Karegar, Mohammad;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.129-137
    • /
    • 2022
  • Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

Dynamic/static stability characteristics of sandwich FG porous beams

  • Weijia Yu;Linyun Zhou
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.203-210
    • /
    • 2023
  • In the present research, dynamic deflections of a sandwich beam having functionally graded (FG) porous core have been investigated assuming that the sandwich beam is exposed to a pulse load of blast type. The two layers of sandwich beam have been made of a polymeric matrix reinforced by graphene oxide powder (GOP). The micromechanical formulation of the layers has been done via Halpin-Tsai model. The solution method is chosen to be Ritz method which is an efficient method to solve the system of equations of beams modeled based on a higher-order theory. To derive the time history of sandwich beam under pulse load, Laplace method has been used. The porosity content of the core, the GOP content of the layers, thickness of the layer and also duration of the applied load have great influences of the responses of sandwich beam.

On dynamic response and economic of sinusoidal porous laminated nanocomposite beams using numerical method

  • Guixiao Xu;F. Ming
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • Dynamic response and economic of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System (열방어구조의 다공성 단열재 유효 열전도율 예측 모델링)

  • Hwang, Kyung-Min;Kim, Yong-Ha;Kim, Myung-Jun;Lee, Hee-Soo;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.163-172
    • /
    • 2017
  • Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.