DOI QR코드

DOI QR Code

Dynamic/static stability characteristics of sandwich FG porous beams

  • Weijia Yu (School of Architecture, Southeast University) ;
  • Linyun Zhou (School of Transportation, Southeast University)
  • Received : 2021.09.03
  • Accepted : 2022.12.21
  • Published : 2023.01.25

Abstract

In the present research, dynamic deflections of a sandwich beam having functionally graded (FG) porous core have been investigated assuming that the sandwich beam is exposed to a pulse load of blast type. The two layers of sandwich beam have been made of a polymeric matrix reinforced by graphene oxide powder (GOP). The micromechanical formulation of the layers has been done via Halpin-Tsai model. The solution method is chosen to be Ritz method which is an efficient method to solve the system of equations of beams modeled based on a higher-order theory. To derive the time history of sandwich beam under pulse load, Laplace method has been used. The porosity content of the core, the GOP content of the layers, thickness of the layer and also duration of the applied load have great influences of the responses of sandwich beam.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 51808208), the special funds by Ministry of Culture and Tourism (Grant No. MCT2020XZ03) and fundamental research funds by Provincial Cultural Relics Bureau (Grant No. 2020SK13).

References

  1. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  2. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
  3. Barati, M.R. and Zenkour, A.M. (2018), "Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection", Mech. Adv. Mater. Struct., 26(6), 503-511. https://doi.org/10.1080/15376494.2017.1400622.
  4. Barati, M.R., Shahverdi, H. and Hakimelahi, B. (2022), "Analysis of nonlinear dynamic behavior of sandwich panels with cellular honeycomb cores and nano-composite skins", Transport Porous Media, 142(1), 115-137. https://doi.org/10.1007/s11242-021-01641-y.
  5. Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concrete Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.
  6. Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Waves Random Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
  7. Ebrahimi, F. and Barati, M.R. (2019a), "Buckling characteristics of bilayer graphene sheets subjected to humid thermomechanical loading", Handbook Graphene Set, 1, 433-454. https://doi.org/10.1002/9781119468455.ch138.
  8. Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran. J. Sci. Techno. Transact. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.
  9. Ebrahimi, F. and Barati, M.R. (2019c), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates. Advances Nano Res., 7(1), 63. https://doi.org/10.12989/anr.2019.7.1.063.
  10. Ebrahimi, F. and Barati, M.R. (2018a), "Static stability analysis of double-layer graphene sheet system in hygro-thermal environment", Microsyst. Technol., 24(9), 3713-3727. https://doi.org/10.1007/s00542-018-3827-0.
  11. Ebrahimi, F. and Barati, M.R. (2018b), "Influence of neutral surface position on dynamic characteristics of in-homogeneous piezo-magnetically actuated nanoscale plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(17), 3125-3143. https://doi.org/10.1177/0954406217728977.
  12. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manufact., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  13. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chemistry, 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  14. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  15. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  16. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988.
  17. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  18. Kitipornchai, S., Chen, D. and Yang, J. (2017). Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets," Materials & Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  19. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams. Computers and Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  20. Li, Z., Zhang, Q., Shen, H., Xiao, X., Kuai, H. and Zheng, J. (2023). Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. ThinWalled Structures, 183, 110370. https://doi.org/10.1016/j.tws.2022.110370.
  21. Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.
  22. Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120. https://doi.org/10.1016/j.commatsci.2018.03.048
  23. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Construct., 2(2), 91. https://doi.org/10.12989/acc.2014.2.2.091.
  24. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020a), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  25. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  26. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.S. (2020c), "Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions", Mech. Based Des. Struct. Machines, 1-17. https://doi.org/10.1080/15397734.2020.1777156.
  27. Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M. S. and Barati, M.R. (2020d), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magnetism Magnetic Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
  28. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020e), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  29. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  30. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Eng. Des., 56(3), 181-192. https://doi.org/10.1177/0309324720939811.
  31. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Australian J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  32. Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: a review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481
  33. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  34. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  35. Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Construct. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.
  36. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  37. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  38. Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates", Adv. Concrete Construct., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.
  39. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle Loading", Mathem. Prob. Eng., 2022, 1-14. https://doi.org/10.1155/2022/7034588.
  40. Xu, L., Cai, M., Dong, S., Yin, S., Xiao, T., Dai, Z. and Soltanian, M.R. (2022), "An upscaling approach to predict mine water inflow from roof sandstone aquifers", J. Hydrology, 612, 128314. https://doi.org/10.1016/j.jhydrol.2022.128314.
  41. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  42. Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concrete Construct., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.
  43. Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.
  44. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.
  45. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating", Mater. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
  46. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022a), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094.
  47. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022b), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831.