Numerical Calculation of High Pressure
Compaction for Porous Materials
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Abstract

A practical constitutive equation with sufficient generality is proposed for porous materials to
deal with plastic pore compaction and pore related strain-hardening. With an application of this
proposed model, finite element calculations are executed for the compaction of a porous material.
Results show powerful potential of finite element method in a quantitative investigation of the
process of the compaction. Special aitention is given to the process of unloading during which

the development of tensile principal stress may lead to phenomena such as lamination and end-

capping.

1. Introduction

Porous material includes many kinds of materials such as soils, rocks, concretes, ceramics, and
metallic powders. These materials have been interested in military and industrial applications
because of their mechanical properties of shock isolation and attenuation®~?, Theoretical
approach to describe the mechanical behaviors of the materials involves a constitutive modelling.
There have been developed many constitutive models for soils and they are mostly applied for
the studies of geotechnical engineering. They are mostly based upon continuum plasticity theory

and the assumption of incompressibility of granular particles. Under the high pressure, however,
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these materials undertakes very large complex deformation. The deformation of the material is
considered to occur due to the pore collapse and the compression of the soild component.

Perhaps the most widely used constitutive model of porous material under high pressure has
been known for the phenomenological Pressure-a model of Herrmann®. In this model, a
constitutive equation for a porous material is derived from the equation of state of solid com-
ponent, plus porosity which varies the state of stress in the material. Recently, Swegle®™
suggested a constitutive model for porous materials based upon the extension of Herrmann’s
Pressure-a model. This extension is physically motivated to describe the shear enhanced pore
compaction of the porous material. In this study, a constitutive model is proposed with the further
extension of Swegle’s model for describing the behavior of a porous material under high pressure
and the model is applied to the finite element analysis of compaction of a powder material.

For' the application of the proposed model, an elasto-plastic finite element calculation is executed
for the die compaction of powder. Die compaction is a fabrication precess for producing powder
compacts under high pressure. As an adventage of this method is its ability to produce variously
shaped powder products with speed. However, there are well recognized problems, heterogeneous
density distribution and fracturing during unloading. The numerical analysis of die compaction
consists of two parts: loading and unloading. The loading is executed by incrementally increasing
a prescribed punch displacement. Unloading is executed by incrementally decreasing the surface
tractions developed during loading. On the basis of the contact node algorithm of Hehenbergen
AL the finite element code is implemented to deal with the little studied problem of powder
friction. Resulting density and stress distributions in cyrindical compacts are discussed for the
different degrees of wall friction. Particularly, residual tensile principal stresses and radial stresses

are studied to understand the end-capping problem associated with unloading’.
2. Constitutive Model

Carroll and Holt’s pressure-a relation‘® is applied for the entire porous body. If the material
is saturated with fluid, the relation between externally applied pressure P and pressure P. in the
solid component can be written by

VP=V,P.+ VP, (D

P=aP,+yFy, 2
or where V, V., and V; are the volume of total material, solid compnent, and fluid, respectively.
The parameter « is defined as the specific solid volume fraction V./V (=1—%), and porosity 7
is the ratio of Vy/V. For the dry material P is regarded as zero. Then the P—a relation
become simply v ‘

P=aP; 3
This is an exact result, independent of the material 1aw and loading path.

The Mie-Grueisen equation is often used for representing the volumetric response equation of
solid under hyrostatic pressure. The equation is

P=A(V,/V:—1)+B{V./Vi=1)+C(Vio/Vi—1)*+DEV,/V,, (4)
where A, B,C, and D are constants, V. is the initial volume of solid, V. is the current volﬁme

of solid after deformation, and E is the specific internal energy per unit mass.
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Elastic response
The elastic response of homogeneous and isotropic material is described by Hook’s law. Pressure
and deviatoric stress increments are expressed in terms of elastic volumetric strain dew® and
deviatric strains dei;®
dP=Kdzeu* 5)
dS:;i=2Gdeij 6)
where K and G are the bulk and the shear modulus of the material. These values, K and G,
are usually obtained to be constants from the experimental testing. However, the elastic modulus
of the porous material can not be considered as constants under the high pressure. As an
advantage of this model, the values of K and G can be evaluated through this modelling.
One of the experimental expression of elastic pressure is written by sound velocity measurements
and the parameter a,
(da/dP) elastic=(1/h*(a)—1)/K,, )
where A(@)=1+{1—a)(Co/Csx—1)/(1+a), (8)
K,;=solid bulk modulus at zero pressure,
Cy, Cio=sound velocity at zero pressure.
This expression can be written simply by
dP-=K.dat )
The pressure-a relation of Eq. (3) is true for any stage of pressure, so the pressure increment

dPc can be expressed by

dPe=dfs(a, Vy=E8 V) goy WO V) vy, 10
From Eq. (5) and (10), the bulk modulus K is defined by
— gy Oofele, V) ( _0fela, V)
K=-K -2 V) (K, 2 ) (1)
Determination of the shear modulus G involves two assumptions that
dS:;i=a dSij; (12)
detiys  —dVe/V.e  defms _ deiss (13)
deit ~  —dVY/V T dewt T detij ’
From these assumptions the shear modulus G can be defined by
A

where G, is the shear modulus of the solid material.

Plastic response
First, we list several basic equations to be used in this formulation :
Yield function

g’:JIy \/ﬁy (Z):O, <15)
Strain increment in the plastic region
deiy=dei +deij?, » (16)
Associated flow rule
og
[ P=
deiit=dA 505 (17)

Increment of stress components
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dP=Kdeu'=K(deu—deu?), (18)
dSi;=2Gdeiif=2G(deij—de:j?), (19)
The plastic volumetrie strain increment dew? and the deviatoric strain increment dei;? are

derived from Eq. (17) in terms of the invariants J; and /7, :

dEEkP d511P+d522P+d533 —Sd/?. aa§ > (20)
0
de;jPZdEej’—-;—dskk"5;j:dl 2\/ﬁ W% @D
Then, Eqs. (18) and (19) can be written as
dP=K den—3K di-28_ 22)
o,

dSy=2G dey—G di—ie- —08__

1i=2G deij— NG R VI (23)

The scalar quantity dA is derived from the assumption that any increment of the yield function
should always be kept at zero in the plastic region:

— ag og —.. 08 , _
dg= dJ+ a¢,ﬁd*/J2 5 da=0, (24)
dJ,=3P=3 K deu—9K di—" (25)
aJl
(S.,dS.,) __G(Sideij) ag
Additionally, we can obtain da from the P—a equation:
Sfe(a, V)=aP;, @n
dfo= af > da+-2av, (28)
vV
_ of» of»
da—~[dfp+V 22 ]/ 2 (29)

From the condition that the increment of the pressure df, in Eq. (28) must equal the
increment of the pressure dP in Eq. (22), da can be derived as

da=(K+V gj;’; \deu—3 K di gi |/ (30)

Substituting Eqs (25), (26) and (30) into Eq. (24), we find
G(Sijdei;) og

di=— [3K aai deu+ NI oI +<I\+V gf“; >%~d6u/ aaf;: J, 31

where H=0K(-28.)' (%) sk 25.)' /. ) (32)

Now, combining Egs. (22) and (23), we obtain the stress and strain relations :
doi;=dPo:i+dS;;
= 0g GSy __0g
= (K dew—3K d1-26— S o+ 2Gdes—dl 2 G
= KK—%G)BU—C,B;,-—C;SUJ deis
— (Cgaij+C4Sii) (Sijdeis) +2Gde;, (33)
af » > _ofs )
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When Ci, C,, C;, and C; are zero, the constitutive equation becomes that of the elastic region.

For the case of unloading, elastic unloading is assumed.

3. Applications

The elasto-plastic finite element calculations are performed for the compaction of metal and
ceramic powders in a rigid cylindrical die. Ralatively few experimental data are available to
determine the material parameters of powder materials. As an example of metal powder,
aluminum powder was examined. The parameters for the aluminum powder were obtained from
the experimetal data of 22% porous aluminum studied by Johnson®® and Swegle®’, As an
example of ceramic powder, an artificial ceramic powder was constructed using the experimental
data for sand. The selection of these powders seems to b2 appropriate for investigating general
features of the die compaction of powder materials.

Material parameters based on 22% porous 2024 aluminum®®:

Initial porosity (7,) =22%,
Density of the solid (ps)=2.7g/cm’,
Shear modulus of the solid (G,)=27.4 GPa,
Bulk modulus of the solid (X)=78.2 GPa,
Ratio of the bulk sound velocity to the solid sound velocity (Cy/Csp)=0. 528,
The pressure-volume equation for the solid,
Pi=78.2(Vi/Vi= 1) +172(Vio/ Vi— 1)+ 40(Vi/V:—1)* in GPa. (38)
An elliptical yield function®” was used for the yield criterion of the alumium powder. The

parameters were determined from uniaxial strain compression data®, The function is given by

[P/P () P+ [~v3] /Y1 () P +1=0, (39
where P,(a) and Y,(a) are expressed by cubic spline functions, v
ﬁ:Ai+Bi<a*a’i>+Ci(0(—a’.')3+Di<a‘a’i>3, ala<ldii, (40)

for P,(a),
a,=0. 77823, a.=0.96158,
A,=0.06033, A,=0.36356,
B,=1.69858, B.=3.26318,
C,=-9.26564, C.=17.779,
D,=49.2034, D,=844].5],
(A:, B:, Ci, and D; are given in GPa).
For this aluminum powder no attempt was made to interpret the function P;(@) using the
spherical collapse model®. A polynomial function was used for the spline function Y,(a):
Yi(a) =Qy(1—a)"Pi(a), 1
where ©,=1.00, m;=0.0, P<0.1GPa
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Fig.1. Model calculations for 22% porous aluminum.

Q,=1.45, m;=0.21, P>0.1GPa.

Calculated pressure-volume and stress difference (g,—03) pressure relationships are shown in
Fig. 1 (a) and 1 (b), respectively. The calculation, obtained using Swegle’s original yield
function, did not reproduce the experimental pressure-deviatoric stress invariant curve well,
This disagreement motivated us to modify Swegle’s material constants to the data shown above.
Detailed discussions of the uniaxial strain compression can be found in Reference®.

Material parameters based on Ottawa sand :
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Fig. 2. Model Calculations for Ottawa sand
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Initial porosity (7,)=31%,

Specific density of the solid (p.)=2.7 g/cm’,

Shear modulus of the solid {G.)=15.0 GPa,

Bulk modulus of the solid (K,,)=25.0 GPa,

Ratio of the bulk sound velocity to the solid sound velocity (Co/Cs)=0. 528,

The pressure-volume equation for the solid,

P=25(V/V:—1)+60.3(Vyy/Vi—1)% in GPa, (42)
An attempt was made to interpret the pressure fuction P,(a) utilizing a spherical collapse

model. The function P,(«) is given by

Pl<a>=~§£<1—a>-2ﬂ/3—1], 43)
where Y=0.0175 GPa,
B=2.322.

Figure 2(a) shows the numerically generated pressure-a relations and the experimental data for
Ottawa sand®, The discrepancy in the range of pressure below (.08 GPa was caused by the
lack of elastic behavior in Ottawa sand and choice of P, {a).

For the yield criterion of this ceramic powder, a lemniscate function was used. The parameters
were determined from the high pressure triaxial compression data for sand‘®. This function

is given by

g=[P+K(a)*+(~3],7 )= B*(a)cos**(z0/2¢), (44)
where K(a)=K,+CP,(a), (45)
B(a)=P,(a)+K(a), (46)
K,=0.04GPa,
C=0. 05,
$=60°,
n=0. 3.
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Fig. 3. Aluminum powder compaction

KBELHEIREE 69



)
]
. E
-[——?v \JE_‘: ..Ns«b\ N \;\ ]
[ o oty AN
' . - 1
o . : N\L\‘\\ \‘\ RSN
| N SN \1‘\\
i ‘ | !
fg! . - ‘K\\\\. \z NN
€ . <
2 Z S o ‘ N ! A (A
L7 i N |
ST A Ly |
. ;
43 2 E-Q;} vl I
z , N j . N ! ‘
L4 . . : e T
s Wi 7 T r,“\ ~ ( |
I -
omm T S Tomm ) : i 1
-1
- S |
7T
i ’ |
; !
(a) Geometry (b) Fractioal density {c) Tensile stresses after unloading

Fig. 4. Aluminum powder compaction in a concentric die

Figure 2(b) shows a comparsion of the stress difference (¢;—03) axial strain relation calculated
by the model with the experimental data for Ottawa sand under the triaxial compression
condition.

A simulation was carried out for the compaction of the aluminum powder in a cylindrical die
of diameter 20 mm and height 30 mm. The maximum displacement of the upper punch was 3.5
mm. The right half of the cylinder was divided by 32 elements. Finer elements were used in
the region close to the wall because of expected large shear deformations. The so-called contact
node algorithm™? was applied for the treatment of wall friction. The method is to consider
the frictional boundary as a mixed condition. The frictional coefficient, the ratio of the tangential
to nomal boundary traction, is prescribed on the frictional boundary, and displacement along
the wall is allowed. The contours of the fractional density distribution and the axial stress for
the frictional coefficient of 0.3 are shown in Fig. 3. The values of maximum around the upper
right corner and the minimum around the lower right corner depend strongly upon the
magnitude of the wall friction. In the case of no wall friction, the density and the stress in the
compact have unique values and no variations appear. Unloading was simulated by incrementally
releasing the surface boundary tractions developed during pressing. It is noted that the unloading
was assumed to be elastic. The most significant result of the unloading was the build-up of
tensile stress around the upper right surface of the compact associated with releasing the top
surface tractions, Arrows in Fig. 3(d) indicate the magnitudes and the directions of the
maximum principal tensile stresses.

For the application of a complex die, compaction of aluminum powder was simulated in a
cylindrical die with concentric profile. Top punch displacement of 2.5mm was applied. The
resulting contour of fractional density distribution for the frictional coefficient of 0.3 and the
bulit-up of residual tensile stresses are shown in Fig. 4. Some errors are involved in the density

distribution especially in the region near internal edge because this finite element calculation
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does not include the convection and rotation terms. However, the general aspects of this density
distribution are consistent with the X-ray measurements of density variation in a similarly

shaped die by Broese van Groenou et al. =%,

4. Summary and Conclusions

The elasto-plastic constitutive model was presented for the porous material. Important features

of the proposed model are:

a, Overall stress components are described in terms of the porosity and the stress in solid.

b. Plasticity behavior is described by a conventional closed yield surface and an associated
hardening flow rule.

c. Elastic material moduli are obtained from the elastic moduli of the solid.

d. Yield function parameters are determined by experimental test results as well as by a
mechanistic modelling of pore compaction.

The proposed model was applied for the finite element calculation to investigate the compaction
behaviors of powder materials. The mechanism of powder-wall friction was implemented into
the finite element program by the contact node algorithm. This methed was easily applicable to
the process of both loading and unloading. Some selected results of die compaction are:

1. Density and axial stress distributions were in good agreement with the results of Hehenberger

(11~12) (13)

and Thompson Density distibution in a compact with a concentric profile was in
good agreement with experimental results in the general aspect of density variation. This is the
evedance that the proposed model is very effective for predicting the stress-strain behavior
of powder under very high pressure.

2. Tensile zone was predicted in the upper portion of the cylindrical compact during unloading.
A crack may develop along the direction of the principal tensile stress plane. So far as
orientation is concerned, the direction of the crack was in good agreement with Thompson’s
experimental and finite element analyses of end-capping in pressed green compacts“®. The
szie of the tensile zone was directly related to the magnitude of coefficicent of wall friction.
Therefore, the unified finite element calculations of loading and unloading provide information

necessary for calculation strngth and serviceability of the compact as well as for optimization of

the compaction process.
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