• Title/Summary/Keyword: Porous Materials

Search Result 1,739, Processing Time 0.031 seconds

Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis (강도가 제어된 인공피부 진피를 활용한 기능성 펩타이드의 프로콜라겐 생합성 분석)

  • Byun, Jina;Shin, Sung Gyu;Han, Sa Ra;Cho, Sung Woo;Lim, Jun Woo;Jeong, Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.419-425
    • /
    • 2018
  • In this study, cross-linked collagen gels were successfully prepared with varying of elastic modulus from 0.7 to 17.7 kPa using a chemical cross-linker. Then, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were examined by gel's mechanical properties. Specifically, increasing elastic modulus of the gel led to decreases in procollagen synthesis from 47 to 32 ng. In addition, there could be optimum elastic modulus for procollagen production, when the gels were treated with adenosine. However, interestingly, this study discovered that the procollagen production level was not influenced by the elastic modulus of the gel for functional peptide. In conclusion, these results would be highly useful for designing reconstructed skins with varying of elastic modulus to examine functional materials in cosmetics.

A Technical Review on Principles and Practices of Self-potential Method Based on Streaming Potential (흐름 전위에 기초한 자연 전위 탐사법의 원리 및 활용)

  • Song, Seo Young;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.231-243
    • /
    • 2018
  • Streaming potential (SP) arises from fluid flow through effectively connected pores. From this potential, formation water information as well as fluid flow properties can be estimated. As micro particles being located in boundary between subsurface porous media and fluid are charged to form electrical double layer, fluid flow caused by several reasons generates SP, one of electrokinetic phenomena. Occurrence mechanism of SP is complex and signal strength is relatively weak compared to noise. However, application of self potential survey using SP to monitoring of formation fluid is expanding because of its' convenience of exploration without artificial source and repetitiveness of signal. This paper accounts for the occurrence mechanism of SP studied before, including governing equations and analyzes previous various case studies of SP according to the change of physical properties of materials. It helps to increase understanding about SP and also lays the foundations of the application of SP to fields.

Comparison of Physical Properties of Permeability Concrete Using Acrylic Polymer (아크릴 폴리머를 사용한 투수 콘크리트의 물성 비교 평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.265-271
    • /
    • 2019
  • The aim of this paper was to improve the shortcomings of Pitcher Concrete, a conventional ethylene-based polymer used in combination with the other components, and present basic data for use as improved road pavement material by applying an acrylic polymer. Existing ethylene polymer-based pitcher concrete materials were selected. Acrylic polymer was then added and the resulting mixture was evaluated. The compressive strength of the existing ethylene-based polymer pitcher concrete combination was low due to the large air gap, and a compressive strength of 24MPa was observed on the 28th day of road use, as defined by KS for an acrylic polymer-based pitcher concrete combination. Regarding the bending strength, the combined strength of the acrylic polymer-based pitcher concrete was excellent, and the factor of the pitcher was measured above the reference, 0.1(mm/s), in all variables. All parameters measured were less than 1%. The acrylic polymer mixing characteristics were able to maintain the dynamic modulus of elasticity for more than 120 cycles, but not more than 80 cycles for the other combinations. Therefore, the addition of more acrylic polymer than conventional ethylene polymer base is effective in improving the durability.

Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group (작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.97-108
    • /
    • 2021
  • In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites (대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구)

  • Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.408-414
    • /
    • 2020
  • The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.

Architectural Product and Formwork Manufacture using 3D Printing - Applicability Verification Through Manufacturing Factor Prediction and Experimentation - (3D 프린팅을 통한 거푸집 제조 및 건축 상품 구현 - 제조인자예측과 실험을 통한 적용가능성 검증 -)

  • Park, Jinsu;Kim, kyung taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) technology is digitalized technology, making it easy to predict and manage quality and also, have design freedom ability. With these advantages, AM technology is applied to various industries. In particular, a method of manufacturing buildings and infrastructure with AM technology is being proposed to the construction industry. However, the application of AM technology is restricted due to problems such as insufficient history and quality of technology, lack of construction management methods, and certification of manufacturing products. Therefore, the manufacture of architectural products is implemented with indirect AM technology. In particular, it manufactures formwork using AM and injecting building materials to implement the architectural product. In this study, hybrid type material extrusion AM is used to manufacture large-sized formwork and implement building products. Moreover, we identify factors that can predict productivity and economic feasibility in the additive manufacturing process. As a result, design optimization results are proposed to reduce the production cost and time of architecture buildings.

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes (가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용)

  • Jeong, Seo Gyeong;Ha, Seongmin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.488-495
    • /
    • 2022
  • Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Free vibration of various types of FGP sandwich plates with variation in porosity distribution

  • Aicha Kablia;Rabia Benferhat;Tahar Hassaine Daouadji;Rabahi Abderezak
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The use of functionally graded materials in applications involving severe thermal gradients is quickly gaining acceptance in the composite mechanics community, the aerospace and aircraft industry. In the present study, a refined sandwich plate model is applied to study the free vibration analysis of porous functionally graded material (FGM) sandwich plates with various distribution rate of porosity. Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the sandwich plate. The number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported sandwich plates is obtained using Hamilton's principle. In order to present the effect of the variation of the porosity distribution on the dynamic behavior of the FGM sandwich plates, new mixtures are proposed which take into account different rate of porosity distribution between the ceramic and the metal. The present method is applicable to study the dynamic behavior of FGM plates and sandwich plates. The frequencies of two kinds of FGM sandwich structures are analyzed and discussed. Several numerical results have been compared with the ones available in the literature.