• 제목/요약/키워드: Porous Layer

검색결과 754건 처리시간 0.027초

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성 (Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum)

  • 황지섭;윤희선;장윤희;이장미;이도권
    • Current Photovoltaic Research
    • /
    • 제8권2호
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

고온 고분자 전해질막 연료전지 수소극 전극에서 서로 다른 가스 확산층에 따른 최적 바인더 함량 결정 (Determination of Optimum Binder Content in the Catalyst Layer with Different GDL for Anode of HT-PEMFC)

  • 전현수;김도형;정현승;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.38-46
    • /
    • 2022
  • Two different gas diffusion layers having noticeable differences in micro-porous layer's (MPL's) crack were studied as a substrate for the gas diffusion electrode (GDE) with different binder/carbon (B/C) ratios in high-temperature polymer electrolyte fuel cell (Ht-PEMFC). As a result, the performance defined as the voltage at 0.2 A/cm2 and maximum power density from the single cells using GDEs from H23 C2 and SGL38 BC with different B/C ratios were compared. GDEs from H23 C2 showed a proportional increase of the voltage with the binder content on the other hand GDEs from SGL38 BC displayed a proportional decline of the voltage to the binder content. It was revealed that MPL crack influences the structure of catalyst layer in GDEs as well as affects the RCathode which is in close connection with the Ht-PEMFC performance.

친수성 PEGDA 하이드로젤 지지체 기반 FO 분리막의 제조 (Fabrication of Hydrophilic PEGDA Hydrogel-supported Forward Osmosis Membranes)

  • 김달용;박성준;이정현
    • 멤브레인
    • /
    • 제33권6호
    • /
    • pp.383-389
    • /
    • 2023
  • 폴리에틸렌 글라이콜 다이아크릴레이트 (polyethylene glycol diacrylate, PEGDA) 하이드로젤을 정삼투 (forward osmosis, FO) 분리막의 지지체로 사용하여 고성능의 FO 분리막을 제조하였다. 친수성의 PEGDA를 자외선 조사를 통한 중합과 그에 따른 상분리를 이용하여 다공성으로 구조화하였고, 매우 높은 친수성을 가진 하이드로젤 지지체를 얻을 수 있었다. 제조된 친수성 PEGDA 지지체 위에 높은 수투과도와 염 선택도를 확보하기 위해서 일반적인 계면중합 방식이 아닌 톨루엔을 유기 용매로 사용한 계면중합 방식(TIP)으로 선택층을 도입하였다. 제조된 PEGDA 지지체 기반 분리막은 1.0 M NaCl 유도 용액과 증류수 유입수를 통한 FO 성능 측정에서 상용 HTI 분리막들에 비해서 매우 높은 수투과도와 낮은 염 선택도를 나타내었다. 본 연구를 통해, 기존의 소수성 지지체를 추가적으로 개질하는 방식이 아닌 새로운 물질과 제조방식을 사용한 FO 지지체의 가능성을 제시하고자 한다.

다공질 자용성 합금 피복에 의한 열간 압연용 런-아웃 테이블 롤러의 내구성 향상에 관한 연구 (A Study on Improvement of Durability for Run-out Table Roller with Hot Rolling by Porous Self-fluxing Alloy Coating)

  • 배명환;박병호;정화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.276-285
    • /
    • 2012
  • 본 연구목적은 열간압연용 런-아웃 테이블 롤러 표면의 기계적 성질을 개선하기 위해 다공질 자용성 합금으로 피복하는 방법을 개발하는 것이다. 열간압연에서 런-아웃 테이블의 롤러 내구성을 높이기 위해서는 고온에서 롤러표면의 경도를 높게 유지해야 하고, 내마모성, 내식성, 내열성, 내소부성 및 내응착성의 향상을 유지하여야 한다. 또한, 고온의 열연 강판을 안정적으로 이송할 수 있도록 하기 위해서는 롤러표면에 적절한 마찰계수를 유지하도록 하여야 하고, 롤러와 강판 사이에 미끄럼 발생이 없어야 한다. 본 연구에서는 자용성 합금에 텅스텐카바이드를 첨가시켜 서메트화하여 롤러의 내마모성을 증대시켰고, 미세 철분말을 롤러표면에 피복하여 다공질을 만들어 마찰계수를 높이고 붙잡음성을 향상시켰다. 그 결과, Ni-Cr 피복 롤러에 비하여 다공질 자용성 합금 피복 롤러는 피복층에 철분이 5 ~ 10 wt%로 많이 함유되어 재용융 공정에서 전기로로 가열하여 일부분만 합금화되고 나머지는 산화 및 용해에 의해 탈락되어 다공질로 나타나 강판과의 붙잡음성을 향상시켰다.

연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성연구 (Fabrication and Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell)

  • 김응용;송락현;신동열;임영언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1547-1549
    • /
    • 1999
  • As a preliminary experiment for the development of anode-supported tubular cell with proper porosity, we have investigated the anode substrate and the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the caron content increased, the porosity of the anode substrate increased slightly and the carbon content with proper porosity was obtained at 30 vol.%. The anode tube was fabricated by extrusion process and the electrolyte layer was coated on the anode tube by slurry dipping process. The anode-supported tube was cofired successfully. Their sintered property and microstructure were examined and the porosity of the anode tube was 35%. From the gas permeation test, the anode tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense. Based upon these experimental results. we will fabricate and test the anode-supported tubular cell.

  • PDF