• 제목/요약/키워드: Porous Cu

검색결과 180건 처리시간 0.026초

촉매 담지 코디어라이트 다공성 필터의 NOx/SOx 동시제거에 대한 연구 (Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter)

  • 이시희;정구춘;김지웅;신민철;이희수
    • 분석과학
    • /
    • 제15권3호
    • /
    • pp.256-262
    • /
    • 2002
  • 평균입자크기가 200 ${\mu}m$인 코디어라이트 분말을 사용하여 다공성 필터를 제조한 후, 진공함침법으로 $V_2O_5$, CuO, $LaCoO_3$ 촉매를 담지시킨 후 NO와 $SO_2$ 기체를 촉매 담지 세라믹필터에 동시 통과시키면서 NOx/SOx의 동시제거효율을 측정하였다. 제조된 다공성 필터의 기공률은 61.6%였고, 압축강도는 12.3 MPa이었으며, 면속도 5 cm/sec에서의 차압은 147 Pa이었다. NO와 $SO_2$의 동시제거효율을 분석해 본 결과, 페로브스카이트계 $LaCoO_3$ 촉매의 동시제거효율이 가장 우수함을 확인하였으며, $LaCoO_3$ 촉매의 NO에 대한 제거효율은 90% 이상, $SO_2$에 대해서는 80% 이상이었다.

CIS 태양전지용 이원 화합물 $Cu_xSe$ 나노입자를 이용한 $Cu_xSe$ 박막 제조 (Fabrication of $Cu_xSe$ thin films by selenization of $Cu_xSe$ nanoparticles prepared by a colloidal process)

  • 김균환;안세진;윤재호;곽지혜;김도진;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.96-98
    • /
    • 2009
  • This report summarizes our recent efforts to produce large-grained CIGS materials from porous nanoparticle thin films. In our approach, a $Cu_xSe$ nanoparticle colloid were first prepared by reacting a mixture of CuI in pyridine with $Na_2Se$ in methanol at reduced temperature. purified colloid was sprayed onto heated molybdenum-coated sodalime glass substrates to form thin film. After thermal processing of the thin film under a selenium ambient. $Cu_xSe$ colloid and thin film were characterized by scanning electron microscopy, x-ray diffraction. The optical(direct) band gap energy of $Cu_xSe$ thin films is 1.5 eV.

  • PDF

팔라듐 합금 수소 분리막의 전처리에 관한 연구 (A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane)

  • 박동건;김형주;김효진;김동원
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

분무열분해법에 의한 구리염화물 용액으로부터 CuO 분말 제조에 관한 연구 (A study on the Manufacture of the CuO Powder from Copper Chloride Solution by Spray Pyrolysis Process)

  • 유재근;박희범
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.58-67
    • /
    • 2002
  • In this study copper chloride(CuCl$_2$) solution was used as raw material to produce the fine copper oxide powder which has less than 1 $\mu\textrm{m}$ average particle size and has uniform particle size distribution by spray pyrolysis process. In the present study, the effects of reaction temperature, the injection speed of solution and air, the nozzle tip size and the concentration of raw material solution on the properties of produced powder were studied. The structure of the powder became much more compact with increasing the reaction temperature regardless of copper concentration of the raw material solution. The particle size of the powder increased accordingly with increasing the reaction temperature in case of 30 g/$\ell$ copper concentration of the solution. The particle size of the powder increased accordingly, and the surface structure of the powder became more porous with increasing the copper concentration of the raw material solution. When copper concentration in raw material solution was more than 100 g/$\ell$, all produced powder was CuCl regardless of reaction temperatures. When copper concentration in solution was below 30 g/$\ell$ and reaction temperature was higher than 90$0^{\circ}C$, CuO was the main phase. The surface of the powder tended to become porous with increasing the injection speed of solution. Particle size was increased and the surface of the powder showed severely disrupted state with increasing the nozzle tip size. The particle size was decreased and the particle size distribution was more uniform with increasing the air pressure through the nozzle.

$Ag_2-Li_2O-CaO-TiO_2-P_2O_5$계의 다공성 글라스 세라믹스의 항균 특성 (Antibacterial Properties of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$Porous Class Ceramics)

  • 강원호;윤영진;이용수;홍범수;염곤;김창수;석만균
    • 한국산학기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2000
  • 인산염계 Ag₂OㆍLi₂OㆍCaOㆍTiO₂ㆍP₂O/sub 5/ 조성에 CuO를 0.05∼l.5 mole 첨가하여 다공성 글래스 세라믹스를 제조하였으며. 제조된 모유리는 최적 핵형성을 위해 610℃. 최고 결정성장을 위해 840℃에서 열처리하였다. 1N-HC1에서 β-Ca₃(PO₄)결정상만을 선택적으로 용출하였으며 LiTi₂(PO₄)₃상과 AgTi₂(PO₄)₃결정상이 존재하는 Glass Ceramics를 제조하였다. 다공성 글래스 세라믹스의 항균효과 및 특성을 평가하였다. Staphylococcus aureus와 Salmonella typhi 균이 본 연구에 사용되었으며, 탁월한 항균효과를 나타내는 것으로 평가되었다.

  • PDF

N-Acylchitosan Porous Bead들의 제조 및 금속이온 흡착특성에 관한 연구 (A Study on the Synthesis of N-Acylchitosan Porous Beads and Their Metal Ion Adsorption Characteristics)

  • 손석일;장병권;최규석
    • 공업화학
    • /
    • 제3권1호
    • /
    • pp.156-171
    • /
    • 1992
  • Chitin was isolated from crab shell. Chitosan, which was prepared by the deacetylation of chitin, was acylated to obtain N-acetyl(regenerated chitin), N-propionyl, N-butyryl, N-hexanoyl, N-decanoyl and N-maleated chitosans and their metal ion adsorption characteristics of N-acylchitosans were investigated. In order to enhance the adsorptivity, their porous beads were prepared and their adsorptivity with respect to the porosity and the adsorptivities for metal ions($Cu^{2+}$, $Ni^{2+}$, $CO^{2+}$, $Mn^{2+}$, $Ag^{+}$)were investigated. Their metal ion adsorptivities were remarkably imporved compared to those of chitin. As the larger acyl groups were introduced, adsorptivity increased, but that of N-decanoyl chitosan showed some decrease because of steric hindrance of the bulky N-decanoyl group. N-Maleated chitosan containing carboxyl group showed highly improved adsorptivity, and N-acylchitosans showed the good selective adsorption in the mixed metal ions($Cu^{2+}$, $Ni^{2+}$, $CO^{2+}$, $Mn^{2+}$ and $Ag^{+}$). They also showed excellent adsorption characteristics as chelating polymers.

  • PDF

용탕 침투법을 이용한 복합 삽입 금속의 제조 (Fabrication of Composite Filler Metal by Melt Infiltration)

  • 박흥일;김지태;김우열
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • ;;오동훈;;정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF