• 제목/요약/키워드: Porous $TiO_2$

검색결과 219건 처리시간 0.029초

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

침전제 적하법을 이용한 $TiO_2$고정화 다공체 제조 (Synthesis of $TiO_2$Anchored on a Porous Clay Ceramic Support Using Dropping Precipitant Method)

  • 신대용;한상목;김경남
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1097-1103
    • /
    • 2001
  • 침전제적하법을 이용하여 점토 다공체에 TiO$_2$의 고정화를 행하였다. 1,15$0^{\circ}C$에서 10분간 급속가열하여 점토 다공체에는 수 mm~$\mu$M의 기공이 존재하였다. 침전제인 NH$_4$HCO$_3$의 주입속도에 의한 반응용액의 pH 변화, 반응온도 및 TiCl$_4$의 농도는 다공체 표면의 TiO$_2$입자 석출상태와 석출된 TiO$_2$입자의 결정구조에 영향을 미쳐 NH$_4$HCO$_3$의 주입속도가 0.8ml/min 및 pH가 6인 다공체 표면에는 TiO$_2$입자들이 균일하게 석출되었다. NH$_4$HCO$_3$의 주입속도와 반응온도가 증가하고 TiCl$_4$의 농도가 감소함에 따라 다공체 표면에는 anatase상 TiO$_2$입자가 석출되었다.

  • PDF

에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성 (Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process)

  • 장한권;장희동;박진호;조국;길대섭
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.479-485
    • /
    • 2008
  • Aerosol templating 법을 이용하여 두 종류의 출발물질 용액($TiO_2$ 나노분말/PS 콜로이드 혼합용액 및 TTIP/PS 혼합용액)으로부터 mesopore 및 macropore를 동시에 가지는 다공성 $TiO_2$ 나노구조체 분말을 제조하였다. $TiO_2$에 대한 PS 분말의 혼합비 및 반응기 온도가 다공성 나노구조체 분말의 특성에 미치는 영향을 조사하였다. $TiO_2$ 나노분말을 출발 물질로 사용한 경우, $PS/TiO_2$ 무게 혼합비를 0.79에서 1.31로 증가시킴에 따라 macropore의 증가가 SEM을 통하여 관찰되었으며 비표면적과 mesopore volume은 각각 $31.6m^2/g$에서 $39.1m^2/g$으로, $0.068cm^3/g$에서 $0.89cm^3/g$으로 증가하였다. TTIP 전구체를 사용한 경우, 동일조건에서 제조한 분말의 비표면적 및 mesopore volume이 각각 67% 및 75% 감소하였다.

다공성 TiO2-SiO2 복합 단열재의 열전도율 평가 (Evaluation of Thermal Conductivity of Porous TiO2-SiO2-Base Thermal Insulation)

  • 최병철;김종호;김종범;정우남;이상현
    • 융복합기술연구소 논문집
    • /
    • 제8권1호
    • /
    • pp.21-25
    • /
    • 2018
  • We developed nano-porous $TiO_2-SiO_2$ composites (commercial name : PTI, porous titania insulator) with low thermal conductivity as thermal insulating material as well as function of photocatalyst. The objectives of this paper are, firstly, to evaluate of the thermal conductivity of the PTI powder in the temperature range from -160 to $250^{\circ}C$, secondly to evaluate of thermal conductivities of insulation materials that is applied PTI powder. The structure of the PTI powder that has the pores size of 20-30 nm and the particle diameter of 2-10 nm. The PTI had a high surface area of $400m^2/g$ and a mean pore size of $45{\AA}$, which was fairly uniform. The thermal conductivity was measured by GHP(guarded hot plate) method and HFM(heat flux method). The PTI structure is a three-dimensional network nano-structures composed by a pearl-necklace that involved a precious stone in the center of the necklace. The thermal conductivities of PTI-PX powder by the GHP and HFM were 0.0366 W/m.K, 0.0314 W/m.K at $20^{\circ}C$, respectively. This is similar to values that are proportional to the square of the absolute temperature of the thermal conductivity of static air. The thermal conductivities of insulating sheets coated with PTI powder were similar results with that of the PTI powder.

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells

  • Yeon, Seung-Hyeon;Patel, Rajkumar;Koh, Jong-Kwan;Ahn, Sung-Hoon;Kim, Jong-Hak
    • 전기화학회지
    • /
    • 제14권2호
    • /
    • pp.83-91
    • /
    • 2011
  • Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.

저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향 (Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR)

  • 김정수;김영희
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.313-320
    • /
    • 2023
  • 대표적인 비암모니아성 선택적 촉매환원반응기인 H2-SCR의 활용성을 높이기 위하여 Ce를 조촉매로 활용한 PtNi/CeO2-W-TiO2의 촉매 분말을 합성하고 다공성 금속 구조(porous metal structure, PMS)에 코팅하여 선택적 촉매 환원에 의한 NOx 제거 특성을 평가하였다. CeO2를 조촉매로 사용한 H2-SCR은 CeO2를 사용하지 않은 경우에 비해 더 높은 NOx 제거 효율을 나타내었으며, CeO2 담지율 10 wt%에서는 반응온도 90℃에서 가장 높은 제거효율을 보였다. 한편, 촉매구조체인 PMS의 촉매 코팅량이 증가함에 따라 NOx 제거효율은 90℃ 이하에서는 향상되었으나, 120℃ 이상에서는 감소하는 경향을 보였고 공간속도를 4,000 h-1에서 20,000 h-1로 변경한 경우, 120℃이상의 온도에서 NOx 제거 효율이 향상되는 것을 확인할 수 있었다.

전기화학형 발광소자의 제작에 관한 연구 (The study of electrochemi-luminescence device fabrication)

  • 권혁문;곽동주;성열문;송재은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1326_1327
    • /
    • 2009
  • In this study, used simplest sandwich cells containing $Ru2^+$ liquid electrolytes in order to clarify the role of nanoporous $TiO_2$ electrodes. And, the cell structure is as follow: F:$SnO_2$ glass/nanoporous $TiO_2$/ tris(2,2'-bipyridy)ruthenium(II) colplex [$Ru(bpy)_3(PF_6)_2$] in acetonitrile/ F:$SnO_2$ glass. The result, we found that ECL intensities increased rapidly by use of cathodes with nanoporous $TiO_2$ layers. And, porous $TiO_2$ electrodes were confirmed to be efficient for ECL devices as well as solar cell devices. It is thought that the increases in the ECL intensities may be associated with both formation of $Ru^+$ in porous $TiO_2$ electrodes and the process taking place after reduction of $Ru^+$ which occurs in the nanoporous electrodes.

  • PDF

Facile Synthesis of Porous TiO2 Nanopearl and Nanorice toward Visible-Light Photocatalysts

  • Lee, Jooran;Bae, Eunju;Yoon, Minjoong
    • Rapid Communication in Photoscience
    • /
    • 제1권1호
    • /
    • pp.13-15
    • /
    • 2012
  • New porous $TiO_2$ nanostructures with shapes of pearl and rice were synthesized by hydrothermal treatment of $TiO_2$-liposome nanocomposites in acid and base solutions, respectively, as identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM) images and large Brunauer-Emmett-Teller (BET) surface areas. The x-ray diffraction (XRD) patterns and selected area electron diffraction proved them to be well-defined anatase crystals. Their UV-visible reflectance absorption spectra were observed to have low band gap energy (3.03 and 3.07 eV, respectively), exhibiting surface absorption band in the visible range from 400 to 600 nm. The degradation of methylene blue (MB) over the $TiO_2$ nanostructures was observed upon visible-light irradiation, which was found to be very efficient as compared with any other conventional visible-light responsive $TiO_2$ nanostructures.

염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성 (Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells)

  • 박경희;김은미;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF