• Title/Summary/Keyword: Porosity rate

Search Result 459, Processing Time 0.025 seconds

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

THE EFFECTS OF SPURE AND INVENTS ON THE CASTING ACCURACY AND POROSITY OF TI-NI CASTINGS

  • Cho Lee-Ra;Yi Yang-Jin;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2003
  • Statement of problem. Titanium-Nickel alloy might be used in various prosthetic restorations since it has a unique property such as super-elasticity and high fatigue resistance. However, little is known about the casting ability of this alloy. Purpose. This in vitro study compared the casting accuracy and the porosity made with different investments and various sprue designs to ascertain what casting condition would be better for the fabrication of Ti-Ni cast restorations. Material and methods. A total of 70 Ti-Ni alloy crowns were made and divided into 7 groups of 10 copings on a metal master die. For measuring the effect of the sprue numbers, two groups with one and two 8-gauge sprues were compared. Moreover, the results of the conventional sprue and the double thickness sprues were compared. Three investments were used; carbon free phosphate bonded investment, titanium investment and gypsum bonded investment. The cast restorations were evaluated at 48 points on the entire circumferential margin with a stereomicroscope measuring in micrometers. Each crown was radiographically examined for casting defects and porosity. Data on casting accuracy were analyzed using two-way and Post hoc Scheffe's comparison to determine whether significant differences existed at the 95% confidence level. Student-Newman-Keuls test were performed to identify significant differences in the number of voids. Results. The double sprueing group and double thickness group had significantly less marginal discrepancy than the single sprueing group (P<.05 and P<.01, respectively). The castings with phosphate bonded investment showed the least marginal discrepancy and the smoothest surface. The castings invested in the gypsum bonded investment had the greatest gaps in margin and the largest failure rate. The double sprueing group and phosphate bonded investment group had significantly smaller void numbers and smaller void size than the other groups. Conclusion. Within the limitations of this in vitro study, the casting accuracy of the groups using thicker, double sprue design and the phosphate bonded investment was significantly superior. Moreover, void number and size were less than other groups.

Fabrication and Characteristics of Anode-Supported Tube for Solid Oxide Fuel Cell (습식법에 의한 고체산화물 연료전지용 연료극 지지체관의 제조 및 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyeon;Im, Yeong-Eon
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.659-664
    • /
    • 2000
  • To develop anode-supported tubular cell with proper porosity, we have investigated the anode substrate and t the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the carbon COntent increased, the porosity of the anode substrate increased slightly and the carbon c content with proper porosity is found to be 30 vol.%. The anode-supported tube was fabricated by extrusion process a and the electrolyte layer was coated on the anode tube by slurry coating process. The anode-supported tube was cofired successfully at $^1400{\circ}C$ in air. The porosity of the anode tube was 35%. From the gas permeation test, the anode t tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense.

  • PDF

Preparation and Performance of Aluminosilicate Fibrous Porous Ceramics Via Vacuum Suction Filtration

  • Qingqing Wang;Shaofeng Zhu;Zhenfan Chen;Tong Zhang
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.12-20
    • /
    • 2024
  • This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 ℃, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 ℃ to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 ℃, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.

Study on Permeability Characteristics of Cement Mortar under Carbonation (탄산화 진행에 따른 시멘트 모르타르의 투수특성에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.185-188
    • /
    • 2006
  • During the carbonation process in concrete, the rate of carbonation depends on porosity and moisture content of the concrete. For underground reinforced concrete structures, the interior concrete surface may be exposed to carbonation and the exterior concrete surface exposed to moisture due to wet soil or underground water. In this study, the permeability coefficients in mortar partially carbonated is derived as a function of carbonation depth and porosity of mortar by applying the so-called micro pore structure formation model (MPSFM) which was developed for the modeling of early-aged concrete. The permeability coefficient obtained from the micro-level modeling of carbonated mortar is verified with the results of accelerated carbonation test and water penetration test in cement mortar.

  • PDF

Fabrication of Porous RBSN Ceramics with Aligned Channels by an Ice-Templating Method

  • Kim, Dong-Seok;Go, Jae-Ung;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.97.1-97.1
    • /
    • 2012
  • Porous ceramics are widely used for applications such as catalysis supports, gas distributors and filters such as DPF. For these purpose, it is important to have proper porosity controlling pore structure while maintaining mechanical and thermal properties. In this work, we have prepared the porous ceramic structures made of reaction bonded silicon nitride with hierarchical pore structures. Uni-directionally aligned pore channels, which are mostly filled with ${\beta}$-Si3N4 whiskers, were achieved by an ice-templating method. The structures of the pore channels and the walls are controllable by the processing conditions, such as solid concentration, freezing rate of the slurry, and additives. We have investigated and characterized the influences of the conditions on the microstructures and the properties, such as porosity, pore size distribution, lamellar thickness, wavelength, and orientations. The compressive strength test and flow test was performed to determine the structural integrity and air permeability.

  • PDF

Mechanical Properties and Mold Filling Capability of Al-Si-Mg Casting Alloy Fabricated by Lost Foam Casting Process (소실모형주조공정으로 제조한 Al-Si-Mg계 주조합금의 기계적 성질 및 주형 충전성)

  • Kim, Jeong-Min;Ha, Tae-Hyung;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.153-158
    • /
    • 2016
  • The lost foam casting process was used to fabricate Al-Si-Mg cast specimens, and the effects of the chemical composition and process variables on the tensile properties and the mold filling ability were investigated. Some porosity formation was observed in thick sections of the casting and better tensile properties were obtained for thin sections, presumably because of their lower porosity and the higher cooling rate. Tensile properties were not clearly enhanced by grain refining treatment with Ti; however, the elongation was significantly improved by Sr modification of the Al-Si-Mg alloy. The mold filling distance was generally proportional to the pouring temperature of the melt, and the distance was also increased by the addition of Ti.

Tribological Properties of Clay Bonded SiC (점토 결합 SiC 소결체의 마찰 마모 특성)

  • 한상준;이경희;이재한;김홍기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1027-1032
    • /
    • 1995
  • SiC had been widely applied for mechanical sealing as a sealing material. SiC sintering is commonly made of reaction sintering, presureless sintering, and hot isostatic pressing (HIP) sintering. In this investigation, however, clay bonded sintering was used to avoide any complications of the special sintering methods as mentioned above. In order to prevent harmful SiC oxidation in the clay bonded sintering, clay and frit were used to form the SiC oxidation protecting layer and graphite was added to provide high solid lubricity. As a result, the material with 6% clay (clay 5.4% and frit 0.6%) and 2~4% graphite (45 mesh) sintered at 140$0^{\circ}C$ for 3 hours, showed the following physical properties; porosity 6%, static friction coefficient 0.15, kinematic coefficient 0.1,. and specific wear rate 4.8$\times$10-8 $\textrm{mm}^2$kgf-1. On the other hand, the flexural strength was 900kgf/$\textrm{cm}^2$. This tribological characteristic properties were similar to those of the reaction sintered SiC except the flexural strength.

  • PDF

Stable and Unstable Crack Growth in Chromium Pre-alloyed Steel

  • Gerosa, Riccardo;Rivolta, Barbara;Tavasci, Adriano;Silva, Giuseppe;Bergmark, Anders
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.138-139
    • /
    • 2006
  • Sintered steels are materials characterized by residual porosity, whose dimension and morphology strongly affect the fatigue crack growth behaviour of the material. Prismatic specimens were pressed at $7.0\;g/cm^3$ from Astaloy CrM powder and sintered varying the sintering temperature and the cooling rate. Optical observations allowed to evaluate the dimensions and the morphology of the porosity and the microstructural characteristics. Fatigue tests were performed to investigate the threshold zone and to calculate the Paris law. Moreover $K_{Ic}$ tests were performed to complete the investigation. Both on fatigue and $K_{Ic}$ samples a fractographic analysis was carried out to investigate the crack path and the fracture surface features. The results show that the Paris law crack growth exponent is around 6.0 for $1120^{\circ}C$ sintered and around 4.7 for $1250^{\circ}C$ sintered materials. The same dependence to process parameters is not found for $K_{Ith}$.

  • PDF

Effect of Cathode Porosity on the Cathodic Polarization Behavior of Mixed Conducting LSCF(La0.6Sr0.4Co0.2Fe0.8O3) (혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 양극분극 특성)

  • Yun, Joong-Cheul;Lee, Jong-Ho;Kim, Joosun;Lee, Hae-Weon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.251-259
    • /
    • 2005
  • In order to characterize the influence of the reaction-site density on the cathodic polarization property of LSCF, we chose the porosity of LSCF as a main controlling variable, which is supposed to be closely related with active sites for the cathode reaction. To control the porosity of cathodes, we changed the mixing ratio of fine and coarse LSCF powders. The porosity and pore perimeter of cathodes were quantitatively analyzed by image analysis. The electrochemical half cell test for the cathodic polarization was performed via 3-probe AC-impedance spectroscopy. According to the investigation, the reduction of oxygen at LSCF cathode was mainly controlled by following two rate determining steps; i) surface diffusion and/or ionic conduction of ionized oxygen through bulk LSCF phase, ii) charge transfer of oxygen ion at cathode/electrolyte interface. Moreover, the overall cathode polarization was diminished as the cathode porosity increased due to the increase of the active reaction sites in cathode layer.