• Title/Summary/Keyword: Porosity Metal

Search Result 318, Processing Time 0.026 seconds

Bonding Behavior of Alumina Ceramic to Metals (알루미나 세라믹과 금속과의 접합거동)

  • 김종희;김정태
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.169-177
    • /
    • 1979
  • The effect of apparent porosity of the fired ceramics, metallizing temperature, and metallizing mixtures on the bond strength in metal-to-ceramic seals was investigated. Three different metallizing compounds were metallized on dense alumina bodies at 1300~$1500^{\circ}C$ in dry hydrogen atmosphere. Bond strength between metal and alumina body was measured by means of nstron test machine. The greater bond strength was observed as the apparent porosity and metallizing temperature was increased. This work indicated that the glassy phase in metallizing mixture, having had sufficient fluidity to migrate into the alumina body, reacted with alumina and thereby forming strong metal-ceramic interface bond. It also showed that the glassy phase having higher thermal expansion cofficient than molybdenum might contribute to the strong bond formation by providing compressive stress around the molybdenum particle.

  • PDF

Effects of Metal Oxides on the Characteristics for Infrared Radiator of Porous Cordierite (다공성 코디어라이트의 원적외선 방사특성에 미치는 금속산화물의 첨가효과)

  • 이상욱;박재성;남효덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.225-228
    • /
    • 2000
  • Addition effects of metal oxide on the characteristics of infrared radiator of porous cordierite have been investigated. The porosity was increased with adding the graphite for 2MgO $.$ 2A1$_2$O$_3$$.$5SiO$_2$. The microstructure and the spectral emissivity were investigated as a function of metal oxide additives. The prosity and the emissivity were decreased with increasing amounts of CuO additives. The prosity and the emissivity were increased with increasing amounts of CoO, MnO$_2$ additives. The infrared radiator of cordierite system which spectral emissivity was 0.927 and 0.928 at from 5$\mu\textrm{m}$ to 20$\mu\textrm{m}$ wavelength as a 9wt% of CoO and MnO$_2$ additives.

  • PDF

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Fabrication of Fe Foam using Slurry Coating Process (슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구)

  • Yun, Jung-Yeul;Park, Dahee;Yang, Sangsun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 2017
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open pores which are penetrable pores are necessary for industrial applications such as in high temperature filters and as support for catalysts. In this study, Fe foam with greater than 90% porosity and 2-mm pore size was successfully fabricated using a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foam samples with different pore sizes and porosity. First, the slurry was prepared through the uniform mixing of powders, distilled water, and polyvinyl alcohol(PVA). The amount of slurry coated with the PU foam increased with increasing $Fe_2O_3$ mixing powder ratio, but the shrinkage and porosity of the Fe foams decreased, respectively, with increasing $Fe_2O_3$ mixing powder ratio.

An Experiment on How the Length and the Diameter of the sprue Effects the Size of the porosity, that is Created During the Moduling Process (주조 시 발생되는 porosity가 sprue의 길이와 굵기에 따라 주조체에 미치는 영향에 관한 실험적 연구)

  • Hwang, Seung-Sig
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • This experiment was done to find out how the length and the diameter of the sprue effects the porosity created during the moduling process, which is caused by the metal's shrinking and stretching action. the experiment was done in two groups(A and B), using experimental gold, and made 10 copings for both groups. 1. In group A, The length of the sprues were given the same, but the diameter of the sprue were 6, 8, 10, 12, 18 gauge. As a result, the porosity came out big with 12 and 18 gauge and for 10, 8, 6 gauge, the porosity was hardly seen or none was noticeable. 2. In group B, the diameter was given the sam for the sprues, but the length of the sprues were 5, 10, 15, 20, 25mm. As a result, the porosity came out big with 25, 20, 15mm the porosity was hardly seen or none was noticeable. 3. The diameter needs to be big and the length, short. 4. The appropriate sized sprue must be chosen for each individual tooth, according to it's shape and size.

  • PDF

The Influence of Fabrication Parameters on the Porosity Formation during Squeeze Infiltration Process (가압함침공정 중 기공 형성에 대한 제조 변수의 영향)

  • 서영호;이형국
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.184-188
    • /
    • 2001
  • The squeeze infiltration process is potentially of considerable industrial importance. The performance enhancements resulting from incorporation of short alumina fiber into aluminum are well documented. These are particularly significant for certain automobile components. But the solidification process gets complicated with manufacturing parameters and factors for porosity formation do not fully understand yet. In this study porosity defects were observed under several infiltrating conditions ; a kind of matrix, an initial temperature of melt, and a volume fraction of reinforcement. The desimetry and the microscopic image analysis were done to measure the amount of porosity. A correlation between manufacturing parameters and defects was investigated through these.

  • PDF

Weldability in Nd:YAG Laser of Sintered Material Depend on Shielding Gases (보호가스에 따른 소결체의 Nd:YAG 레이저 용접성)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This study includes the effects of shielding gas types and flow rate on Nd:YAG Laser weldability of sintered material. The types of shielding gas were evaluated for He, Ar and N2. Bending strength, porosity rate, hardness and aspect ratio testing of laser weld are carried out to evaluated the weldability. As a results, Ar gas was showed the best welding strength even it has the most porosity content on weld metal, and depend on increases the gas flow rate, it was not only got deeper penetration depth but also showed higher bending strength. Therefore we could know that bending strength is not only affect the porosity content but also melting area.

  • PDF