• Title/Summary/Keyword: Pores

Search Result 2,097, Processing Time 0.035 seconds

Effects of Pores on the Microstructure of Melt-Processed $YBa_2Cu_3O_{7-x}$ Oxides (용융공정으로 제조한 $YBa_2Cu_3O_{7-x}$ 산화물의 미세조직에 미치는 기공의 영향)

  • 김찬중;홍계원
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Formation of pores in melt-processed $YBa_2Cu_3O_{7-x}$ (123) oxides and its effect on the microstructure were studied. Spherical pores with a size of a few tens of microns were formed due to the evolution of oxygen gas during melting of a 123 oxide. Some of pores were converted into liquid pockets by liquid filling, but others remained unfilled. The liquid pockets were converted into spherical 123 regions with a lower $Y_2BaCuO_5$ (211)density through the peritectic reaction during subsequent cooling, while the pores were entrapped into the periteictically grown 123 grains. The spherical 123 regions often consists of a residual melt due to the unbalanced peritectically reaction.

  • PDF

Effects of the Colloid/Interface Variables on Densification and Pore Elimination of Zirconia (콜로이드/계면변수가 Zirconia의 치밀화와 기공제거에 미치는 영향)

  • 장현명;한규호;이기강;정한남
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.169-178
    • /
    • 1990
  • The sintering characteristics of ZrO2 were analyzed in terms of pore microstructure and kinetics of pore elimination. The pore structue of the ZrO2 sample prepared from colloid suspension was characterized by three distinct types of pores ; intradomain, interdomain, and intergglomerate pores. Sintering data at 1600$^{\circ}C$ showed that pores larger than a certain critical size(∼3$\mu\textrm{m}$) were difficult to remove, and this was analyzed in terms of the interagglomerate pore formed from the suspension under the condition of low kinetic stability, that is, the stability ratio smaller than its critical value. A theoretical equation for densification rate was derived and was applied to the densification rate of the ZrO2 polycrystalline body containging both the matrix(the 1st-generation) pores and the interagglomerate (the 2nd-generation) pores under the condition of slow grain growth.

  • PDF

Behavior of Isolated Pores during Liquid Phase Sintering of $MgO-CaMgSiO_4$ System ($MgO-CaMgSiO_4$ 계 액상소결중의 고립기공거동)

  • 송병무;김정주;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 1985
  • A theoretical model describing the behavior of isolated pores during liquid phase sintering was developed and the experimental results obtained by the $80MgO-CaMgSiO_4$ specimens were given. Most of isolated pores once formed in the interior of specimen were not eliminated because the pressure of trapped non-diffusable gas in the pore like $N_2$ increases very rapidly with pore volume contraction. As sint-ering time increase it was observed that the number of pores decreases whereas the average size of pore increases. This phenomenon was interpreted in terms of the MgO growth during sintering which results in the coalescence of isolated pores. The increase of pore size resulting from pore coalescence was attributed to the main cause of the overfiring phenomena ; the higher sintering temperature or a long time sintering leads to a decrease in density.

  • PDF

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders (산화물 복합분말 첨가 Camphene 슬러리의 동결건조 공정에 의한 Cu-Co 복합계 다공체 제조)

  • Lee, Gyuhwi;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 2020
  • Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

Tiny Pores Observed by New Solar Telescope and Hinode

  • Cho, Kyung-Suk;Bong, Su-Chan;Chae, Jong-Chul;Kim, Yeon-Han;Park, Young-Deuk;Ahn, K.;Katsukawa, Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Our previous study on tiny pores (R < 2") observed by HINODE/Solar Optical Telescope (SOT) revealed that the plasma in the pores at the photosphere is always moving down and the pores are surrounded by the strong downward motions (highly red-shifted) of neighboring granulations. From this study, we speculated that the flow motions above the pore should be related with the motions at the photosphere, since the pore is strong magnetic field region. Meanwhile, SNU and KASI installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To get some clue on the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic islands (SMIs), which have similar magnetic flux with the pores but does not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1) There are upflow motion on the pores and downflow motion on the SMIs. (2) Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMIs. (3) There is oscillating motion above pores and the SMIs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMIs. This is more clearly seen on the other regions of stronger magnetic field. In this talk, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.

  • PDF

INTENSITY AND DOPPLER VELOCITY OSCILLATIONS IN PORE ATMOSPHERE

  • Cho, Kyung-Suk;Bong, Su-Chan;Nakariakov, Valery;Lim, Eun-Kyung;Park, Young-Deuk;Chae, Jongchul;Yang, Heesu;Park, Hyung-Min;Yurchyshyn, Vasyl
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.98-98
    • /
    • 2014
  • Due to the simple vertical structure of magnetic field, pores can be exploited to study the transport of mechanical energy by waves along the magnetic field to the chromosphere and corona. For a better understanding of physics of pores, we have investigated chromospheric traveling features running across two merged pores from their centers at the speed about 55 km s-1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). We infer a LOS velocity by applying the bisector method to the Ca II $8542{\AA}$ band and $H{\alpha}$ band, and investigate intensity and the line-of-sight velocity changes at different wavelengths and different positions at the pores. We find that they have 3 minutes oscillations, and the intensity oscillation from the line center is preceded by that from the core ($-0.3{\AA}$) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from near the core spectra is greater than that from the far core spectra. These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy.

  • PDF

New Record of a Moray Eel, Strophidon dorsalis(Muraenidae, Anguilliformes) from Korea (한국산 곰치과 어류 첫기록종, Strophidon dorsalis)

  • Kang, Chung Bae;Kim, Maeng Jin;Kim, Jin-Koo;Song, Choon Bok
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.191-196
    • /
    • 2020
  • A single specimen of Strophidon dorsalis (1,254 mm in total length), belonging to the family Muraenidae, was firstly collected in a fish trap off the coastal waters of Jindo Island in July 2018. It was characterized by having unpatterned body coloration, thin body, slightly rounded snout, two superorbital pores, three infraorbital pores, and six mandibular pores. This species is distinguishable from a morphologically similar species, S. sathete inhabiting the Korean waters by having three infraorbital pores (vs. four in S. sathete), last infraorbital pore below an anterior part of the eye (vs. below a posterior part of the eye), body depth 3.2~4.1% in total length (vs. 1.8~3.1%), and total vertebrae 154~167 (vs. 188~200). We add S. dorsalis to the Korean fish fauna and propose a new Korean name, "Seo-mang-gom-chi" for the species.

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry (CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조)

  • Kang, Hyunji;Riu, Doh-Hyung;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

Photoionization of $TiO_2$ Particles Incorporated into Silica Gels Studied by EPR Spectroscopy

  • Ahn, Sang-Won;Kang, Kee-Hoon;Hong, Dea-Il
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.50-63
    • /
    • 2000
  • Titanium dioxide particles with three different average sizes, prepared by three different methods, were incorporated into silica gel pores by impregnation. The titanium dioxide incorporated into the silica gel pores was photoionized by 240-400 nm irradiation at 77 K by a one-photon process to from trapped hole centers on OH group and trapped electron centers on titanium which were detected by electron paramagnetic resonance at 77 K. During the impregnation the smallest size range of TiO2 particles can be incorporated into silica gels with 2.5-1.5 nm pores. However, the largest size range of TiO2 particles can only be incorporated into silica gels with 6-15 nm pores and not into silica gels with 2.5-4 nm pores. The photoyield and stability of photoinduced hole and electron centers depends on the silica pore sizes of silica gels and surface area as well as on the TiO2 loading. In large pore silica gels and large particle size of TiO2, photoinduced charge separation reaches to a plateau at shorter irradiation times and the trapped hole and electron centers are more stable to decay.

  • PDF