• Title/Summary/Keyword: Pore size distribution

Search Result 495, Processing Time 0.041 seconds

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3749-3754
    • /
    • 2012
  • Nanoporous carbons with a high specific surface area were prepared directly from thermoplastic acrylic resin as carbon precursor and MgO powder as template by carbonization over the temperature range, $500-1000^{\circ}C$. The effect of the carbonization temperature on the pore structure and $CO_2$ adsorption capacity of the obtained porous carbon was examined. The textural properties and morphology of the porous carbon materials were analyzed by $N_2/-196^{\circ}C$ and $CO_2/0^{\circ}C$ adsorption/desorption isotherms, SEM and TEM. The $CO_2$ adsorption capacity of the prepared porous carbon was measured at $25^{\circ}C$ and 1 bar and 30 bar. The specific surface area increased from 237 to $1251m^2/g$, and the total pore volumes increased from 0.242 to $0.763cm^3/g$ with increasing the carbonization temperature. The carbonization temperature acts mainly by generating large narrow micropores and mesopores with an average pore size dependent on the level of carbonization of the MgO-templated nanoporous carbons. The results showed that the MgO-templated nanoporous carbons at $900^{\circ}C$ exhibited the best $CO_2$ adsorption value of 194 mg/g at 1 bar.

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(II)-TEM Study (이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(II)-TEM을 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.749-755
    • /
    • 2003
  • A development of micropores of $CO_2$activated isotropic carbon fibers from TEM was observed. It was observed that the micropores of activated carbon fibers(ACFs) were consisted of slit-shaped pores(SP) and cylinder-shaped pores(CP). The SPs were formed between two parallel-carbon layers, and the CPs were formed at a place which is connected polygonally by more than two carbon layers. It was shown that the CPs of the ACFs were developed at high degree of burn-offs and at high activation temperature. The pore size distribution of the best ACF, which was observed at a highest value of specific surface area(3,495 $\m^2$/g), showed a continuous distribution in the range of about $4∼l5\AA$, and the median pore size was 6.7$\AA$. The super-high specific surface area of ACFs was found to be due to that the SPs were connected with a maximum size of 7∼8$\AA$ continuously, It is possible that the SPs should be formed in the ACFs in order to show super-high SSA.

Preparation of SiC-Al alloy Composite by Pressureless Powder Packing Forming Method (분말 충전 성형법을 이용한 SiC-Al Alloy 복합체의 제조)

  • 박정현;송준광;백승수;염강섭;강민수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • To fabricate the ceramic/metal(SiC/ Al alloy) composite, SiC preform was prepared by Pressureless Powder Packing Forming Method and 6061 Al alloy was infiltrated into the preform. Uniform compact having an average pore size of 10 ${\mu}{\textrm}{m}$ and narrow pore size distribution was prepared. Phenolic resin solution(40 wt%) was penetrated into the SiC compact, and then the compact was preheated at the temperature of 120$0^{\circ}C$. The pore size distribution and the microstructure of the preform were not changed by preheating. An uniform microstructure without any crack in the preform was obtained in SiC-Al alloy composite. The infiltration of 6061. Al alloy into the preform began at the temperature of 130$0^{\circ}C$ and the amount of infiltration increased in proportion to the infiltration temperature and the soaking time. The increasement rate of the infiltration amount decreased after 3 h. As a result of the infiltration at 140$0^{\circ}C$ for 4 h, Al alloy was well distributed in the interparticle channels and the relative density of the composite was above 98%. The strength and the fracture toughness of the composite were 303 MPa and 21.65 MPam1/2, respectively.

  • PDF

Treatment of the Wastewater of High Surfactant Concentration by GAC GAC Adsorption (GAC에 의한 고농도 계면활성제 폐수의 흡착처리)

  • Kim, Hag-Seong;Lee, Jin-Phil;Han, Hoon-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 1999
  • For a cosmetic plant wastewater containing surfactants of high concentration, adsorption treatment by granular activated carbon(GAC) having different pore size distribution was studied. Three sorts GACs were used and regenerated afterwards with methanol. Experiments were composed of batch process and column test for both virgin and regenerated GACs. Following conclusions were drawn from the study: Methylene blue activating substance(MBAS) adsorption data from the batch tests for three GACs are described well by BET isotherm and Freundich isotherm. Simulation with the BET isotherm shows that maximum adsorption appears to be affected not only by specific surface area but also by pore size distribution. Maximum adsorption from the BET isotherm for MBAS appears to diminish as the number of reactivation increases. The diminishing ratio of maximum adsorption appears to decrease as the pore size decreases. Recovery ratio of the methanol by vacuum evaporation from the spent methanol ranges from 95% to 97%.

Computer Simulation on the Correlations between the Microwave Quality factor and the Pores inside the Dielectrics (마이크로파 유전체의 내부 기공과 마이크로파 품질계수의 상관관계에 대한 컴퓨터 시뮬레이션)

  • 박재환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.311-316
    • /
    • 2003
  • Effects of pores on the microwave properties in microwave dielectric ceramics were studied by a computer simulation. Scattering matrix S$\_$21/ obtained from the network analyzer was compared to the S$\_$21/ obtained from the simulation. From electric field distribution, the dominant resonant TE$\_$01$\delta$/ mode could be easily determined. The effects of the porosity and pore size inside the dielectrics on the microwave properties were investigated by the HFSS simulation. When the total pore volume remains constantly, the quality factor decreased as the pore size Increases. As the total pore volume of the dielectrics increased. quality factor decreased.

An Experimental Study on the Performance Evaluation of Lightweight Foamed Concrete According to Size and Replacing Ratio of Artificial Lightweight Aggregate (인공경량골재 크기 및 혼입량에 따른 경량기포콘크리트의 물리적 성능 평가에 관한 실험적 연구)

  • Jeong, Seong-Min;Yun, Chang-Yeon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.162-163
    • /
    • 2017
  • This study investigated the properties of lightweight foamed concrete by using synthetic foaming agent and artificial lightweight aggregate. The effects of artificial lightweight sizes on the compressive strength, density and pore structure of the concrete were investigated. The samples were assessed by MIP analysis and simultaneous SEM was used to study their pore distribution. This study showed the improvement of important properties of lightweight foamed concrete. Lower pore distribution and correspondingly higher compressive strength values were reached. This is for the purpose of providing basic data for the use of lightweight foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

A Simulation Method for Modeling the Morphology and Characteristics of Electrospun Polymeric Nanowebs

  • Kim Hyungsup;Kim Dae-Woong;Seo Moon Hwo;Cho Kwang Soo;Haw Jung Rim
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • We developed an algorithm to simulate the generation of virtual nanowebs using the Monte Carlo method. To evaluate the pore size of the simulated multi-layered nanoweb, an estimation algorithm was developed using a ghost particle having zero volume and mass. The penetration time of the ghost particle through the virtual nanoweb was dependent on the pore size. By using iterative ghost particle penetrations, we obtained reliable data for the evaluation of the pore size and distribution of the virtual nanowebs. The penetration time increased with increasing number of layers and area ratio, whereas it decreased with increasing fiber diameter. Dimensional analysis showed that the penetration time can be expressed as a function of the fiber diameter, area ratio and number of layers.