• Title/Summary/Keyword: Pore formation

Search Result 564, Processing Time 0.025 seconds

An Ultrafiltration Study for the Recycling of Synthetic Water-Based Cutting Oil (수용성 합성 절삭유의 재사용을 위한 한외여과 연구)

  • Kim, Jong-Pyo;Kim, Jae-Jin;Ryu, Jong-Hoon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.119-128
    • /
    • 2002
  • In the present study the membrane filtration characteristics of a commercially available synthetic water-based cutting oil through two kinds of ultrafiltration membranes (HF1-45-CM50 and HF1-43-CM100) with molecular weight cut-offs of 50,000 and 100,000, respectively, have been investigated in detail. Among these membranes, the hydrophilic one (HF1-45-CM50) was found to show a satisfactory result for both the permeate flux and the permeability of oil components, whereas the permeate flux obtained with the hydrophobic membrane (HF1-43-CM100) appears to be significantly low, indicating that synthetic cutting oil was easily wetted on the hydrophobic membrane surface and induced more membrane fouling. The effect of material characteristics of the membrane on the filtration characteristics was found to be much more significant compared with the mean pore size of the membrane. Backflushing by nitrogen gas was applied to reduce the formation of a gel layer and membrane fouling. With the hydrophilic membrane, the backflushing was found to increase the permeate flux, whereas the backflushing resulted in a decrease in flux for the hydrophobic membrane. The flux recovery was observed to be highest when the membranes fouled with waste synthetic cutting oil were immersed into a cleaning solution for more than 72 hours and then backflushed by nitrogen gas.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Silicon/Carbon Composites Having Bimodal Mesopores for High Capacity and Stable Li-Ion Battery Anodes (고용량 고안정성 리튬 이차전지 음극소재를 위한 이중 중공을 갖는 실리콘/탄소 복합체의 설계)

  • Park, Hongyeol;Lee, Jung Kyoo
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In order to address many issues associated with large volume changes of silicon, which has very low electrical conductivity but offers about 10 times higher theoretical capacity than graphite (Gr), a silicon nanoparticles/hollow carbon (SiNP/HC) composite having bimodal-mesopores was prepared using silica nanoparticles as a template. A control SiNP/C composite without a hollow structure was also prepared for comparison. The physico-chemical and electrochemical properties of SiNP/HC were analyzed by X-ray diffractometry, X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements for surface area and pore size distribution, scanning electron microscopy, transmission electron microscopy, galvanostatic cycling, and cyclic voltammetry tests to compare them with those of the SiNP/C composite. The SiNP/HC composite showed significantly better cycle life and efficiency than the SiNP/C, with minimal increase in electrode thickness after long cycles. A hybrid composite, SiNP/HC@Gr, prepared by physical mixing of the SiNP/HC and Gr at a 50:50 weight ratio, exhibited even better cycle life and efficiency than the SiNP/HC at low capacity. Thus, silicon/carbon composites designed to have hollow spaces capable of accommodating volume expansion were found to be highly effective for long cycle life of silicon-based composites. However, further study is required to improve the low initial coulombic efficiency of SiNP/HC and SiNP/HC@Gr, which is possibly because of their high surface area causing excessive electrolyte decomposition for the formation of solid-electrolyte-interface layers.

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Assessment of the Correlation between Segregation Potential and Hydraulic Conductivity with Fines Fraction (세립분 함유량에 따른 동상민감성 지수와 수리전도도의 상관관계 평가)

  • Jin, Hyunwoo;Kim, Incheol;Eun, Jongwan;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.47-56
    • /
    • 2021
  • The cryosuction (negative pore pressure) in freezing soils causes groundwater migration from the frozen fringe to freezing front for ice lens formation. Frost heave and heaving pressure by ice lens cause damage to ground infrastructure. In order to prevent damage by the frost heave, various frost susceptibility criteria have been proposed. The SP (Segregation Potential) is the most widely used classification criterion for frost susceptibility in cold regions. The expansion of the ice lens by the migration of the groundwater is a key role in frost heave mechanism, and thus it is necessary to evaluate the hydraulic conductivity. In this paper, soil mixtures of coarse-fines (sand-silt) were prepared in various weight fractions and used for frost heave and column permeability test. For each case, the SP and the hydraulic conductivity were derived and correlations were analyzed. As a results, the transition threshold of the SP and the hydraulic conductivity were shown at 20% and 50% of the silt weight fraction, respectively. Although there are difference between these transition thresholds, these two coefficients show a specific correlation. In the future, additional study should be conducted for detailed analysis of the threshold transition values between SP and hydraulic conductivity.

Thermal properties of silica fume-SiO2 based porous ceramic fabricated by using foaming method (직접 발포법을 이용해 제조된 실리카 흄-SiO2계 다공성 세라믹의 열적 특성)

  • Ha, Taewan;Kang, Seunggu;Kim, Kangduk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.182-189
    • /
    • 2021
  • Porous ceramics were manufactured using the foaming method for the development of inorganic insulating materials. Silica fume and SiO2 were used as main raw materials, and bentonite was used as a rapid setting agent for uniform structure formation of porous ceramics. The porous ceramics were sintered at 1200℃, and porosity, density, compressive strength, microstructure and thermal conductivity were analyzed. As the content of silica fume to SiO2 of the porous ceramics increased 70 to 90 %, the specific gravity increased from 0.63 to 0.69, and the compressive strength increased from 9.41 Mpa to 12.86 Mpa. But, the porosity showed a tendency to decrease from 72.07 % to 70.82 %, contrary to the specific gravity. As a result of measuring the thermal conductivity, the porous ceramic with a silica fume content of 70 % showed a thermal conductivity of 0.75 to 0.72 W/m·K at 25 to 800℃, respectively, and, another that a silica fume content of 90 % showed a 0.66~0.86 W/m·K. So the lower the silica f ume content, the lower the thermal conductivity, which was conf irmed to be consistent with porosity result. As a result of microstructure analysis using SEM (Scanning Electron Microscope), pores in the range of tens to hundreds ㎛ were observed inside and outside the porous ceramic, and it was confirmed that the pore distribution was relatively uniform.

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent (소결조제로 나노크기 γ-알루미나 입자의 도입에 따른 α-알루미나 중공사 분리막의 기계적 강도 향상)

  • Kim, Yong-Bin;Kim, Min-Zy;Arepalli, Devipriyanka;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.150-162
    • /
    • 2022
  • In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.