• Title/Summary/Keyword: Pore flow

Search Result 498, Processing Time 0.029 seconds

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.

Interactions of Wave and Poro-elastic Seabed under Uniform Current (일정 흐름장에서의 파랑과 다공질 탄성 해저지반의 상호작용)

  • Kim Beom-yeong;Lee Gil-Seong;Park U-Seon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.45-52
    • /
    • 1997
  • Ocean seabed is usually covered with various types of marine soils. A marine soil is a mixture of two phases: soil particles that forms an interlocking skeletal frame, pore fluids that occupy a major portion of pore space. When gravity water waves propagate over a porous movable seabed, a hydrodynamic pressure on the fluid-seabed interface and fluid flow in the porous medium are induced. (omitted)

  • PDF

Relationship between the Thickness of Micorporous Layer and the Flow of Fuel at the Anode GDL of DMFC (DMFC의 연료극에서 GDL의 Microporous layer의 두께와 연료흐름과의 관계)

  • Lee, Eun-Suk;Yang, Kyoung-Hun;Lim, Jong-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.474-476
    • /
    • 2006
  • 본 연구에서는 다양한 두께, loading 및 기공 구조를 갖는 MPL을 형성하여 DMFC용 확산층을 제조하였다. 본 실험에서 제조한 확산층의 경우, 두께가 증가하면서 기공이 micro-pore에서 meso-pore 영역으로 옮겨감을 확인할 수 있었으며, 또한 기공구조에 따라 공기 투과도 특성이 변화하는 것을 확인할 수 있었다 각각의 확산층은 서로 다른 운전 조건에서 우수한 성능(흑은 안정적인 성능)을 갖는 것으로 확인되었으며, 이는 용도에 따른 확산층의 적합한 구조 설계가 요구됨을 의미한다.

  • PDF

An Analytical Solution of Flow and Progressive Wave-Induced Residual Pore Water Pressure in Seabed (흐름과 진행파에 의한 해저지반 내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.13-28
    • /
    • 2015
  • This study extended the Lee et al.'s (2015a) solution which improved the existing analytical solution for prediction of the residual pore water pressure into progressive wave and flow coexisting field. At this time, the variation of incident wave period and wave length should be incorporated to Lee et al.'s (2015a) analytical solution, which does not consider flow. For the case of infinite thickness, the new analytical solution using Fourier series was compared to the analytical solution using Laplace transformation proposed by Jeng and Seymour (2007). It was verified that the new solution was identical to the Jeng and Seymour's solution. After verification of the new analytical solution, the residual pore water pressure head was examined closely under various given values of flow velocity's magnitude, direction, incident wave's period and seabed thickness. In each proposed analytical solution, asymptotic approach to shallow depth with the changes in the soil thickness within finite soil thickness was found possible, but not to infinite depth. It is also identified that there exists a discrepancy case between the results obtained from the finite and the infinite seabed thicknesses even on the same soil depth.

Analysis of seepage in trenching for surface desiccation of dredged soft ground (준설매립지반 표층건조처리를 위한 트렌치 굴착시 간극수의 침투해석)

  • 정하익;오인규;이용길;이승원;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.529-536
    • /
    • 2002
  • The purpose of this paper os to present and discuss some of flow and drain observed in modelling results. Because dredged fill ground of Yul-Chon located in the south coast of Korea is very soft, this ground should be improved after operation of surface stabilization. There are surface stabilization method such as chemical stabilization, desiccation, horizontally vacuum drain, replacement, and geosynthetics. In Yul-Chon, PTM(Progressive Trenching Method) is adopted to provide the necessity condition of surface desiccation. In the case trench in the dredged soft ground is formed by PTM equipment, pore water in the ground is drained through trench. There, drain and desiccation of surface ground increase, and bearing capacity is improved. In this research, when trench in the dredged soft ground is formed by PTM equipment, permeable characteristics and drain efficiency of pore-water are analyzed using SEEP/W software package. Results show variation of total head, pressure head, flux, hydraulic gradient, and flow quantity.

  • PDF

Finite Element Analysis of Underground Structural Systems Considering Transient Flow (지하수의 천이흐름을 고려한 지하구조계의 유한요소해석)

  • 김문겸;이종우;박성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.103-110
    • /
    • 1996
  • In this paper, behaviour of underground structural systems due to excavation and change of groundwater level is analyzed using finite elements. Equilibrium equations based on the effective pressure theory and transient flow equations considering the groundwater level are derived. Integration equations are derived using Galerkin's approximation and time dependent analysis is employed to compute groundwater level change and pore pressures. This computed pore pressures are employed in equilibrium equations and then finally displacements and stresses are computed. The developed program is applied to analyze the behaviour of ground excavation below the groundwater level. The program is also applied to multi-step excavation at the same model. The results show that the displacements of the ground surface are much influenced by the change of the groundwater level. Therefore, it is concluded that the change of the groundwater level should be considered in order to analyze the behaviour of the underground structural systems accurately

  • PDF

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Back Flushing Behavior of Microfiltration Membrane Fouled by Alumna Colloidal Suspensions (알루미나 현탁액에 의해 오염된 정밀여과막의 역세척 거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.34-46
    • /
    • 2009
  • Effect of backflushing on the membrane fouling for polyethylene capillary membranes was examined by measuring the flux of $Al_2O_3$ colloidal suspensions through the cross flow microfiltration. In the comparison of with and without the application of backflushing, the hydraulic resistance to permeate flow of the suspension was less with backfluslng, but the Increasing rate in permeate resistance was higher. Regardless of backflushing, the cake filtration was dominant at the initial period of filtration with backflushing, being followed by the pore blocking. And at steady state, the fouling mechanism is almost governed by the cake filtration model. On the contrary, the pore blocking preceded the cake filtration in the initial stage of the original membrane before backflushing. And irrespective of backflushing, the ratio of cake filtration to total fouling increased, compared with that fur before backflushing. For the membrane with $0.24{\mu}m$ pore size, the permeate resistance was higher than that of $0.34{\mu}m$ pore size membrane. but the ratio of cake filtration was smaller than that of large pore membrane. In comparing the ratio of each fouling component to the total fouling for the case with backflushing pore blocking was 7.8% and cake filtration was 92.2%. for the case without backflushing, total fouling was composed of 9.6% pore blocking and 90.4% cake filtration.