• Title/Summary/Keyword: Pore density

Search Result 601, Processing Time 0.026 seconds

A Study on the physical characteristics of foaming glass by recycling waste glass (재생발포유리의 물리적 특성에 관한 연구)

  • Kim Hyung-Ju;Chang Pil-Kyu;Choi Chang-Ha;Lee Soo-Wohn;Cho Hae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.473-477
    • /
    • 2005
  • In the study of foaming a general waste glass, sample 1 to 5 were made in a various foaming conditions, measurements of pH, density, compressive strength, thermal conductivity, and the sound absorption rate were carried out. Sample I showed the most small pore, and sample 5 showed pores of 3 times larger than that of sample 1. In terms of pore size, Sample 5 was foamed mostly well, but except lower density compressive strength, efficiency of sound absorption, testing in sound room were obtained below the minimum values is lower. In the case of Sample 1 it showed $0.58g/cm^3$, but the final target value was $0.8g/cm^3$. In the case of compressive strength it showed $22kg/cm^3$, which is above value of the final target. The efficiency of sound absorption of Sample 1 showed NRC 0.68, which is close to the final target of NRC 0.7.

  • PDF

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis (반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화)

  • Lee, Han-Baek;Seo, Chee-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Apparent Densification Rate and Initial Permeability of NiCuZn Ferrite Depended on Relative Packing Density (NiCuZn Ferrite의 겉보기 고화속도와 초기투자율의 충진율 의존성에 관한 연구)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this research, the processing control of NiCuZn Ferrite (NCZF) had been studied. NiCuZn Ferrite, which calcined at $700^{\circ}C$ for 3 bours, was ball milled for about 60 hours to ill김ke a size of $0.5\mu\;extrm{m}$ followed by granulation using spray dryer Apparent densincatioo rate and initial permeability of NiCuZn Ferrite with an initial packing density had been investigated as f follows. 1.The relative packing density of NCZF green body increas$\xi$d in the range of 48.6-56.8% with an increased forming pressure of 20-170 MPa. 2. The higher the relative pac퍼ng density of NCZF and the sintering temperature are, the higher the initial densification rate. The increased bulk rlcnsity of NCZF was attributed to the densification rate with decreased open pore and increased closed pore as the relative packing density, sintering temperature, and sinteriog tim$\xi$ increased. 3. The initial P permeability of NCZF with constant composition is logarithmically proportional to the bulk density of NCZF sintered at $875~925^{\circ}C$ for 0-5h, and strongly depended on the relative packing density of NCZF green body. The empirical equation is as f follows; log $\mu$i=$G1{\times}BD$+$G2{\times}RPD$+b(0);where, G1, G2; gradient, B.D: bulk density, RPD; relative packing density, b(0); intercept.

  • PDF

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.

Changes in Flexural Strength and Electrical Resistivity of Bulk Graphite According to the Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 굽힘강도 및 전기비저항 변화)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2021
  • In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.

Effects of dry density and water content on compressibility and shear strength of loess

  • Guo, Yexia;Ni, Wankui;Liu, Haisong
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.419-430
    • /
    • 2021
  • Investigation on the compressibility and shear strength of compacted loess is of great importance for the design and operation of engineering infrastructures in filling area. In this study, the mechanical behaviors of Yan'an compacted loess are investigated at various dry densities and water contents by conducting one dimensional compression and direct shear tests. And the elastic compressibility, plastic compressibility, yield stress and strength are obtained from the experiments. Results show that when water content increases, plastic compressibility parameter increases, but yield stress decreases. However, the increase of dry density leads to a decrease in plastic compressibility parameter but an increase in yield stress. In addition, elastic compressibility parameter is found to be a constant which is irrelevant to water content and dry density. As for strength, cohesion and internal friction angle is directly proportional to dry density, but inversely proportional to water content. Moreover, the mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) tests were also performed to observe the pore size distribution and microstructure of the specimens. Finally, by using results of MIP and SEM tests, the compressibility and strength behaviours of Yan'an compacted loess are explained from the perspective of pore-size distribution and microstructure.

Porosity Estimation Using the Characteristics of Porous Zeolite (다공성 제올라이트의 특성을 이용한 기공율 추정 연구)

  • Hyeji Kim;Yeon-Sook Lee;Jin Sun Cha
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.249-254
    • /
    • 2023
  • In this study, porosity estimation was conducted by the physical properties of zeolite. Because of the difficulty of directly measuring the porosity of particulate matter, the porosity was calculated by applying the measured physical properties of zeolite to the calculation formula presented in various literature. For this purpose, the average particle size, particle size distribution, specific surface area, and pore characteristics of three types of zeolite - zeolite beta, zeolite Y, and ZSM-5 - were measured. In addition, the true density using gas and liquid phases, and two types apparent density (tap and untapped density) were measured. We calculated the porosity using these results, compare and analyzed the results, and evaluated main factors that determine the porosity.

Optimal Condition of Microporous Membrane for Bone Marrow Stromal Cell Allotransplantation to Stimulate Wound Healing in Vitro (창상치유목적의 골수기질세포 동종이식을 위한 고분자막의 조건)

  • Lee, Eun-Sang;Kim, Myeong-Joo;Han, Seung-Kyu;Hong, Sung-Taek;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.509-518
    • /
    • 2010
  • Purpose: Major drawbacks of conventional bone marrow stromal cells (BSCs) transplantation method are mainly caused by direct transplanted cell to host cell interactions. We hypothesized that separation of the transplanted cells by a microporous membrane might inhibit most of the potential adverse effects and induce superior effect. The purpose of the study is to determine the optimal condition of the microporous membrane. Methods: First, BSCs were placed in polyethylene terephthalate (PET) transwell inserts with 3, 8, or $12{\mu}m$ pore size, and cultured in 24 well culture plates. After 5 days, bottoms of the plates were observed for presence of attached BSCs in monolayer and cell numbers were evaluated. Second, BSCs were placed PET, polycarbonate (PCT), and mixed cellulose esters (MCE) transwell inserts with 3 and $8{\mu}m$ pore size, and cultured in 24 well culture plates. After 3 days, the supernatants of the media left in culture plate were analyzed for collagen, vascular endothelial growth factor (VEGF), platelet derived growth factor BB (PDGF-BB), and basic fibroblast growth factor (bFGF). Third, BSCs were placed in 15% and 70% of the PET membrane with $3{\mu}m$ pore size. All the experimental conditions and methods were same as the second study. Results: The optimal pore sizes to prevent BSC leakage were $3{\mu}m$ and $8{\mu}m$. The amounts of type I collagen and three growth factors tested did not show significant differences among PET, PCT, and MCE groups. However, the collagen, VEGF, and bFGF levels were much higher in the high (70%) density group than in the low (15%) density group. Conclusion: This study revealed that the optimal pore size of membrane to prevent direct BSC to recipient cell contact is in between $3{\mu}m$ and $8{\mu}m$. Membrane materials and pore sizes do not influence the collagen and growth factor passage through the membrane. The most striking factor for collagen and growth factor transport is pore density of the membrane.

Effect of MgO addition in glass composition on the strength of zirconia-glass composites (지르코니아-유리복합체용 글래스의 조성에서 MgO의 함량 변화가 강도에 미치는 영향)

  • Lee, Kyu-Sun;Lee, Chang-Wan;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2007
  • The quantity of MgO in the Zirconia of 20wt% Frit has been varied and the sintering temperature has been differentiated to monitor the changes in the mechanical features. The rise of sintering temperature from 1100$^{\circ}C$ to 1300$^{\circ}C$ was followed by higher sintering density. And, at a sintering temperature, the increase of the quantity of MgO was followed by lower sintering density. The bending strength has been lowered as the quantity of MgO increases in the Zirconia of 20wt% Frit, which seems to be because the MgO functions as impurities degrading the mechanical features. In terms of micro-structure analysis, the pore has been greatly enlarged, while the density varied very little, when the MgO of 3wt% was added. The size of pore became smaller as the added quantity of MgO increased larger in the sequence of 5wt% and 7wt%. But, the pore-generating rate became higher as the added quantity of MgO increased in the sequence of 3wt%, 5wt% and 7wt%. Thus, it is possible to summarize that the small quantity of MgO, say, of 3wt%, promotes the grain growth, and the large quantity of MgO, say, of 7wt%, hinders the grain growth. Also, if the quantity of MgO exceeds some level, the MgO hinders substances from moving, which, ultimately, keeps blowholes from becoming enlarged or extinct, and makes pores small and dispersed in broad area. In conclusion, the study on the change in the size of pore shows that the larger the quantity of MgO is, the more the micro pores are, thereby degrading the mechanical features.

  • PDF