DOI QR코드

DOI QR Code

Porosity Estimation Using the Characteristics of Porous Zeolite

다공성 제올라이트의 특성을 이용한 기공율 추정 연구

  • Hyeji Kim (Korea Testing Laboratory, Material Technology Center) ;
  • Yeon-Sook Lee (Korea Testing Laboratory, Material Technology Center) ;
  • Jin Sun Cha (Korea Testing Laboratory, Material Technology Center)
  • 김혜지 (한국산업기술시험원 재료기술센터) ;
  • 이연숙 (한국산업기술시험원 재료기술센터) ;
  • 차진선 (한국산업기술시험원 재료기술센터)
  • Received : 2023.12.13
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

In this study, porosity estimation was conducted by the physical properties of zeolite. Because of the difficulty of directly measuring the porosity of particulate matter, the porosity was calculated by applying the measured physical properties of zeolite to the calculation formula presented in various literature. For this purpose, the average particle size, particle size distribution, specific surface area, and pore characteristics of three types of zeolite - zeolite beta, zeolite Y, and ZSM-5 - were measured. In addition, the true density using gas and liquid phases, and two types apparent density (tap and untapped density) were measured. We calculated the porosity using these results, compare and analyzed the results, and evaluated main factors that determine the porosity.

본 연구에서는 제올라이트의 물리적 특성으로부터 기공율을 추정하는 연구를 수행하였다. 입자상 물질의 기공율 직접 측정의 어려움으로 본 연구에서는 여러 문헌에서 제시된 계산식에 제올라이트의 물리적 특성 측정값을 적용하여 기공율을 계산하였다. 이를 위해 제올라이트 3종-zeolite beta, zeolite Y, ZSM-5-에 대해 각각의 평균입자 크기 및 particle size distribution, 비표면적 및 기공특성을 측정하였으며, 가스와 액상을 이용한 진밀도, tap과 untapped를 적용한 겉보기 밀도를 측정하였다. 측정결과로부터 기공율을 계산하여 결과를 비교하고 기공율을 결정하는 주요 인자에 대해 평가하였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구이며, 이에 감사드립니다(과제번호: 20015633).

References

  1. Kato, Y., Morimoto, T., Kobashi, K., Yamaguchi, T., Mori, T., Sugino, T., and Okazaki, T., "Porosity and Size Analysis of Porous Microparticles by Centrifugal Sedimentation With and Without Density Gradient," Powder Technol., 407, 117663 (2022).
  2. Zhao, C., Zhou, W., Hu, Q. H., Xu, H., and Zhang, C., "Porosity Measurement of Granular Rock Samples by Modified Bulk Density Analyses with Particle Envelopment," Mar. Pet. Geol., 133, 105273 (2021).
  3. Donato, I. D. and Lazzara, G., "Porosity Determination with Helium Pycnometry as a Method to Characterize Waterlogged Woods and the Efficacy of the Conversion Treatment," Archaeometry, 54(5), 906-915 (2012). https://doi.org/10.1111/j.1475-4754.2011.00657.x
  4. Chang, C. S., "Measuring Density and Porosity of Grain Kernels Using a Gas Pycnometer," Cereal Chem., 65, 13-15 (1988).
  5. Detsi, E., De Jong, E., Zinchenko, A., Vukovic, Z., Vukovic, I., Punzhin, S., Loos, ten Brinke, G., De Raedt, H. A., Onck, P. R., and De Hosson, J. T. M., "On the Specific Surface Area of Nanoporous Materials," Acta Mater., 59(20), 7488-7497 (2011). https://doi.org/10.1016/j.actamat.2011.08.025
  6. Santos Junior, J. J. P., Pereira, R. G., Rosendahl, M., Santo Filho, D. M. E., and Gouveia, J. M. G., "The Use of Ethanol to Determine the Volume of a Pycnometer Used to Measure the Density of Liquids at Different Temperatures and Pressures," J. Braz. Soc. Mech. Sci. Eng., 42(1), 42-50 (2020). https://doi.org/10.1007/s40430-019-2107-y
  7. Zhu, J., Komatsu, K., Li, H., Kudo, Y., Okuda, R., Ishibashi, Y., Yamada, T., Toda, I., Ohshio, S., Tuda, Y., and Saitoh, H., "True Density of Nanoporous Carbon Fabricated from Rice Husk," Measure., 173, 108627 (2021).
  8. Raj, K., "Effect of WO3 Powder Particle Shape, Size and Bulk Density, on the Grain Size and Grain Size Distribution of Tungsten Metal Powder," Met. Powder Rep., 71(4), 285-287 (2016). https://doi.org/10.1016/j.mprp.2016.05.007
  9. Rodriguez-Ramirez, J., Mendez-Lagunas, L., Lopez-Ortiz, A., and Torres, S. S., "True Density and Apparent Density During the Drying Process for Vegetables and Fruits: a Review," J. Food Sci., 77(12), R146-R154 (2012).
  10. Abdullah, E. C. and Geldart, D., "The Use of Bulk Density Measurements as Fowability Indicators," Powder Technol., 102(2), 151-165 (1999) https://doi.org/10.1016/S0032-5910(98)00208-3
  11. Saw, H. Y., Davies, C. E., Paterson, A. H. J., and Jone, J. R., "The Influence of Particle Size Distribution and Tapping on the Bulk Density of Milled Lactose Powders," Proceedings of CHEMECA 2013 Conference, Brisbane, Australia (2013).
  12. Boukouvalas, C. J., Krokida, M. K., Maroulis, Z. B., and Marinos-Kouris, D., "Density and Porosity: Literature Data Compilation for Foodstuffs," Int. J. Food Prop., 9(4), 715-746 (2006).
  13. Sharif, S., DiMemmo, L. M., Thommes, M., Hubert, M., and Sarsfield, B. A., "A Simplified Approach to Determine Effective Surface Area and Porosity of Low Bulk Density Active Pharmaceutical Ingredients in Early Development," Adv. Powder Technol., 26(2), 337-348 (2015). https://doi.org/10.1016/j.apt.2014.11.002
  14. Lee, J. J., "Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite," Clean Technol., 18(1), 76-82 (2012). https://doi.org/10.7464/ksct.2012.18.1.076
  15. Ha, H. J., Hong, J. H., Choi, J. H., and Han, J. D., "Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts," Clean Technol., 19(3), 287-294 (2013). https://doi.org/10.7464/ksct.2013.19.3.287
  16. Kim, J., Seo, S., and Jae, J., "Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment," Clean Technol., 28(4), 269-277 (2022)
  17. Cao, C., Xuana, W., Yana, S., and Wang, Q., "Zeolites Synthesized from Industrial and Agricultural Solid Waste and Their Applications: A Review," J. Environ. Chem. Eng., 11(5) 110898 (2023).
  18. Sprynskyy, M., Golembiewski, R., Trykowski, G., and Buszewski, B., "Heterogeneity and Hierarchy of Clinoptilolite Porosity," J. Phys. Chem. Solids, 71(9), 1269-1277 (2010). https://doi.org/10.1016/j.jpcs.2010.05.006
  19. Du, X. and Wu, E., "Porosity of Microporus Zeolite A, X and ZSM-5 Studied by Small Angle X-ray Scattering and Nitrogen Adsorption," J. Phys. Chem. Solids, 68(9), 1692-1699 (2007). https://doi.org/10.1016/j.jpcs.2007.04.013
  20. Saadati, Y., Chatelain, J-F., Lebrun, G., and Beauchamp, Y., "Comparison of Density Measurement Method for Unidirectional Flax-epoxy Polymer Composites," European Conference on Multifunctional Structures, Barcelona, Spain (2019).