• 제목/요약/키워드: Porcine reproductive and respiratory syndrome (PRRS)

검색결과 62건 처리시간 0.025초

혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형 (Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level)

  • 박최규;윤하정;이창희;정병열;이경기;김현수
    • 대한수의학회지
    • /
    • 제48권1호
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.

PRRS 바이러스 ORF5a 단백질의기능학적역할 (ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication)

  • 오종석;이창희
    • 한국미생물·생명공학회지
    • /
    • 제43권1호
    • /
    • pp.1-8
    • /
    • 2015
  • 돼지생식기호흡기증후군(porcine reproductive and respiratory syndrome; PRRS) 바이러스의 ORF5a 단백질이 바이러스 생장에 필수적인 단백질인지 확인하기 위해서 PRRS 바이러스 감염성 클론을 이용하여 ORF5a 단백질 유전자를 결손시킨 변이 클론을 제작하였다. 야생형 PRRS 바이러스 감염성 클론과 ORF5a 단백질이 결손된 변이 클론을 BHK-tailless pCD163 세포에 transfection시킨 결과 변이클론에서감염성있는바이러스가숙주세포로부터만들어지지않았다. 이결과가 ORF5a 단백질발현의부재때문인지검증하기위해서 BHK-tailless pCD163-tailless 세포에 ORF5a 단백질을안정적으로발현하는세포주를제작하였고이세포주에동일한 transfection 실험을한결과세포에서공급되는 ORF5a 단백질발현에의해감염성있는바이러스가만들어지는것을확인하였다. 이로써 ORF5a 단백질이 PRRS 바이러스가 생장하는데 있어서 필수적인 단백질임을 확인할 수 있었다.

안동과 합천 지역 양돈장의 돼지생식기호흡기증후군(PRRS) 조사 (Survey of porcine reproductive and respiratory syndrome (PRRS) on pig farms in Andong and Hapcheon region)

  • 강혜원;오윤이;송재영;최은진
    • 한국동물위생학회지
    • /
    • 제37권1호
    • /
    • pp.11-18
    • /
    • 2014
  • Porcine reproductive and respiratory syndrome (PRRS) causes a significant economic loss in the swine industry not only in Korea but also all over the world. Andong and Hapcheon region were selected for Area Regional Control (ARC) programme to reduce the shedding of PRRS virus (PRRSV) and decrease PRRS outbreaks. Before conducting the PRRS ARC, sera of pigs were tested for both antibody using ELISA and antigen using RT-PCR, then phylogenetic classifications was analysed. Pigs of 138/275 (50.2%) in Andong and 352/425 (82.8%) in Hapcheon were seropositive. Also, the RT-PCR results revealed that 27 heads (8.2%) in Andong, 112 heads (22.0%) in Hapcheon were positive for PRRSV antigen. PRRSVs were mainly detected between the ages of 40 to 60 days. PRRSV ORF5 regions were used to determine genetic clusters based on previous report. All PRRSV type I detected in both Andong and Hapcheon were classified as Cluster I. The PRRSV type II isolates in Andong were assorted to Cluster II, whereas the PRRSV type II isolates in Hapcheon were the viruses were unassembled into any cluster except one identified to Cluster III. Phylogenetic analysis indicated that new clusters of PRRSVs type II were prevalent in Hapcheon.

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

Viral characteristics of plaque variants of porcine reproductive and respiratory syndrome virus

  • Park, Bong-kyun;Molitor, Thomas W.;Joo, Han-soo
    • 대한수의학회지
    • /
    • 제39권4호
    • /
    • pp.751-759
    • /
    • 1999
  • Plaque characteristics of porcine reproductive and respiratory syndrome (PRRS) virus isolates were examined using MARC-145 line cells. The plaque morphology of PRRS virus isolates was variable in size and heterogenic in population. Upon serial passages of the PRRS virus isolates on MARC-145 tells, heterogeneity was maintained but numbers of the large plaque size virus were increased with certain isolates. A PRRS virus isolate with variable plaque sizes was subcloned into 2 populations : small plaque ($H_S$) and large plaque ($H_L$) viruses. Growth kinetics of the subclones were then determined in MARC-145 cells, and production of the structural polypeptides was analyzed by SDS-PAGE. In a comparison of the growth kinetics, the $H_S$ virus showed higher infectivity titers during the first 48 hours but slower to reach the peak titier than $H_L$ virus did. In a nucleotide sequence comparison, differences of 4 nucleotides in open reading frames 5-6 gene were found between $H_S$ and $H_L$ viruses. Both the $H_S$ and $H_L$ clones produced 5 polypeptide bands with molecular weights of 15, 19, 26, 36 and 42 kD. The 5 bands were detected at 48 hours postinoculation (PI) with antisera to $H_L$ and another large plaque virus ($W_L$) and at 72 hours PI with $H_S$ virus antiserum. The present results demonstrate differences of biologic and molecular characteristics between the two PRRS virus plaque clones.

  • PDF

Serological and genetic characterization of the European strain of the porcine reproductive and respiratory syndrome virus isolated in Korea

  • Kim, June-Youp;Lee, Seung-Yoon;Sur, Jung-Hyang;Lyoo, Young S.
    • 대한수의학회지
    • /
    • 제46권4호
    • /
    • pp.363-370
    • /
    • 2006
  • Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease of swine that occurs all over the swine industry worldwide. It was first observed in the Unite States in 1987 then in Europe in 1990. It has been described in Japan and in Korea in 1993. PRRS virus is divided into two distinct types, North American and European, genetically. Based on our limited knowledge there has been no report on the existence of European PRRSV. But according to the government's Korea Customs Service there has been many importations of breeding pigs from Europe. These seem to make an estimate that European PRRSV could be introduced in Korea by inflow of European breeding pigs. We first detected the European PRRSV could be introduced in Korean pig farms by using polymerase chain reaction (PCR). Further, it is also identified that there are not only North American PRRSV antibody but also a European PRRSV antibody. According to the genetical and serological experiment results, the presence of established North American PRRSV in Korea is due to the use of live vaccines made of North American PRRSV strain as well field virus infection, and the European PRRSV is possibly introduced from imported breeding stock.

돼지 생식기호흡기증후군바이러스의 농장단위 방역대책 수립을 위한 혈청학적 및 바이러스학적 감염유형 분석법 적용 및 비교 (Comparison of Serological and Virological Analysis for Infection Patterns of Porcine Reproductive and Respiratory Syndrome Virus to Establish a Farm Level Control Strategy)

  • 김성희;이창희;박최규
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1170-1176
    • /
    • 2009
  • Porcine reproductive and respiratory syndrome virus (PRRSV) has plagued pig populations worldwide causing severe economical impacts. In order to establish effective strategies for prevention of PRRS, infection patterns on the herd level are primarily evaluated. In the present study, therefore, serological and virological analyses were conducted in 20 pig farms suffering from PRRS. Seroprevalence levels in each farm were grouped into 3 patterns: SN (Stable sow groups/Not infected piglet groups, SI (Stable sow groups and Infected piglet groups), and UI (Unstable sow groups and Infected piglet groups). The rates of each serological pattern were 15% (n=3), 10% (n=2), and 75% (n=15), respectively. In addition, the pattern analysis was extended to virological monitoring on the same farms that further included suckling pig groups. As a result, the infection pattern was classified into 4 categories: SNI (Stable sow groups/Not infected suckler groups/Infected piglet groups), SII (Stable sow groups/Infected suckler groups/Infected piglet groups), UNI (Unstable sow groups/Not infected suckler groups/Infected piglet groups), and UII (Unstable sow groups/Infected suckler groups/Infected piglet groups). The rates of each viroprevalence were estimated at 50% (n=10), 30% (n=6), 10% (n=2), and 10% (n=2), respectively. PRRSV viroprevalence results of suckling pig groups revealed that 8 farms were considered virus positive. In 2 farms among these farms, PRRSV appeared to be transmitted vertically to suckling piglets from their sows. In contrast, piglet-to-piglet horizontal transmission of PRRSV seemed to occur in sucking herds of the remaining farms. Thus, this virological analysis on suckling piglets will provide useful information to understand PRRSV transmission routes during the suckling period and to improve a PRRS control programs. Our seroprevalence and viroprevalence data found that infection patterns between sow and piglet groups are not always coincident in the same farm. Remarkably, 15 farms belonging to the UI seroprevalence pattern showed four distinct viroprevalence patterns (SNI; 7, SII; 4, UNI; 2 and UII; 2). Among these farms, 11 farms with unstable seroprevalence sow groups were further identified as the stable viroprevalence pattern. These results indicated that despite the absence of typical seroconversion, PRRSV infection was detected in several farms, implying the limitation of serological analysis. Taken together, our data strongly suggests that both seroprevalence and viroprevalence should be determined in parallel so that a PRRS control strategies can be efficiently developed on a farm level.

돼지생식기호흡기증후군바이러스 ORF7 유전자 발현 및 단크론항체 생산 (Expression of porcine reproductive and respiratory syndrome virus (PRRSV) ORF7 gene and monoclonal antibody production)

  • 이승철;박가혜;이경원;류민상;강신영
    • 한국동물위생학회지
    • /
    • 제37권3호
    • /
    • pp.143-150
    • /
    • 2014
  • Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiological agent of PRRS characterized by reproductive losses in sows and respiratory disorders in piglets. The PRRSV is a small enveloped virus containing a positive-sense, single-stranded RNA genome and divided into two genotype, type 1 (European) and type 2 (North American), respectively, by nucleotide identity. In this study, ORF7 gene of the type 1 and type 2 PRRSV was cloned and expressed in Baculovirus expression system. Also, monoclonal antibodies (MAbs) against ORF7 were produced and characterized. The expressed ORF7 proteins in the recombinant virus were confirmed by indirect fluorescence antibody (IFA) test using His6 and PRRSV-specific antiserum. A total of eight MAbs were produced and characterized. One (3G12) MAb was type 1 PRRSV ORF7-specific and two (6B10 and 16H8) were type 2 PRRSV ORF7-specific. Other five (1A1, 2A4, 4B4, 12C4 and 13F11) MAbs reacted with both type 1 and type 2 PRRSV. Some PRRSV ORF7-specific MAbs recognized the porcine tissues infected with PRRSV by IFA or immunohistochemistry (IHC) assay. From this experiment, it was confirmed that MAbs produced in this study were PRRSV ORF7-specific and could be used as reliable reagents for type 1/type 2 PRRSV detection.

Classification of Porcine Wasting Diseases Using Sound Analysis

  • Gutierrez, W.M.;Kim, S.;Kim, D.H.;Yeon, S.C.;Chang, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권8호
    • /
    • pp.1096-1104
    • /
    • 2010
  • This bio-acoustic study was aimed at classifying the different porcine wasting diseases through sound analysis with emphasis given to differences in the acoustic footprints of coughs in porcine circo virus type 2 (PCV2), porcine reproductive and respiratory syndrome (PRRS) virus and Mycoplasma hyopneumoniae (MH) - infected pigs from a normal cough. A total of 36 pigs (Yorkshire${\times}$Landrace${\times}$Duroc) with average weight ranging between 25-30 kg were studied, and blood samples of the suspected infected pigs were collected and subjected to serological analysis to determine PCV2, PRRS and MH. Sounds emitted by coughing pigs were recorded individually for 30 minutes depending on cough attacks by a digital camcorder placed within a meter distance from the animal. Recorded signals were digitalized in a PC using the Cool Edit Program, classified through labeling method, and analyzed by one-way analysis of variance and discriminant analysis. Input features after classification showed that normal cough had the highest pitch level compared to other infectious diseases (p<0.002) but not statistically different from PRRS and MH. PCV2 differed statistically (p<0.002) from the normal cough and PRRS but not from MH. MH had the highest intensity and all coughs differed statistically from each other (p<0.0001). PCV2 was statistically different from others (p<0.0001) in formants 1, 2, 3 and 4. There was no statistical difference in duration between different porcine diseases and the normal cough (p>0.6863). Mechanisms of cough sound creation in the airway could be used to explain these observed acoustic differences and these findings indicated that the existence of acoustically different cough patterns depend on causes or the animals' respiratory system conditions. Conclusively, differences in the status of lungs results in different cough sounds. Finally, this study could be useful in supporting an early detection method based on the on-line cough counter algorithm for the initial diagnosis of sick animals in breeding farms.

Effects of ozone, ultraviolet and an organic acid-based disinfectant against porcine reproductive and respiratory syndrome virus

  • Yoon, Yong-Dae;Kim, Won-Il
    • 한국동물위생학회지
    • /
    • 제36권3호
    • /
    • pp.157-162
    • /
    • 2013
  • A good level of biosecurity practice is important for efficient porcine reproductive and respiratory syndrome (PRRS) control. In the current study, disinfecting ability of ozone against PRRS virus (PRRSV) was evaluated in comparison with ultraviolet (UV) and an organic acid-based disinfectant to assess the possible use of ozone for disinfecting farm vehicles, equipments, and materials to reduce the risk of new virus introduction. For in vitro evaluation, the levels of infectious virus and viral RNA were determined on the swabs collected from the floor surface of each room treated with either ozone, UV or the disinfectant up to 30 min after contamination with 100 mL of VR2332 ($10^5\;TCID_{50}/mL$). For in vivo evaluation, 3, 4-week old, PRRS-free pigs were housed into those rooms right after the last swab collection. Then the pigs in each room were injected intramuscularly with the corresponding swab samples collected at the last time point and pooled per each room. Although ozone, UV, and the disinfectant significantly reduced the levels of PRRSV RNA contamination, ozone was most effective in removing the viral RNA. In addition, the virus collected after at least 10 min exposure to ozone failed to replicate in pigs while the virus collected after treatment with UV and the disinfectant for 30 min still replicated in pigs. Based on the results, it was concluded that ozone is more effective in inactivating PRRSV as compared with UV and the organic acid-based disinfectant.