• Title/Summary/Keyword: Porcine oocyte

Search Result 234, Processing Time 0.029 seconds

DNA damage repair is suppressed in porcine aged oocytes

  • Lin, Tao;Sun, Ling;Lee, Jae Eun;Kim, So Yeon;Jin, Dong Il
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.984-997
    • /
    • 2021
  • This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.

Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro

  • Lee, Joo Bin;Lee, Min Gu;Lin, Tao;Shin, Hyeon Yeong;Lee, Jae Eun;Kang, Jung Won;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.956-965
    • /
    • 2019
  • Objective: The main goal of this study was to provide a morphological indicator that could be used to select high-quality oocytes of appropriate meiotic and developmental capabilities in pig. The higher quality of immature oocytes, the higher success rates of in vitro maturation (IVM) and in vitro fertilization (IVF). Thus, prior to the IVM culture, it is important to characterize oocytes morphologically and biochemically in order to assess their quality. Two of the largest indicators of oocyte quality are the presence of cumulus cells and status of chromatin. To investigate the effects of porcine oocyte chromatin configurations on the developmental capacity of blastocysts, we assessed oocyte chromatin status according to follicle size and measured the developmental potency of blastocysts. Methods: To sort by follicle size, we divided the oocytes into three groups (less than 1 mm, 1 to 3 mm, and more than 3 mm in diameter). To assess chromatin configuration, the oocytes were assessed for their stages (surrounded nucleolus [SN] germinal vesicle [GV], non-surrounded nucleolus [NSN] GV, GV breakdown, metaphase I [MI], pro-metaphase II [proMII], and metaphase II [MII]) at different maturation times (22, 44, and 66 h). To assess the development rate, oocytes of each follicle size were subjected to parthenogenetic activation for further development. Finally, GV oocytes were grouped by their chromatin configuration (SN, SN/NSN, and NSN) and their global transcriptional levels were measured. Results: SN GV oocytes were more suitable for IVF than NSN GV oocytes. Moreover, oocytes collected from the larger follicles had a greater distribution of SN GV oocytes and a higher developmental capacity during IVM, reaching MII more quickly and developing more often to blastocysts. Conclusion: Porcine oocytes with high-level meiotic and developmental capacity were identified by analyzing the relationship between follicle size and chromatin configuration. The porcine oocytes from large follicles had a significantly higher SN status in which the transcription level was low and could be better in the degree of meiotic progression and developmental capacity.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Effects of Roscovitine on In Vitro Development of Porcine Oocyte Using Brilliant Cresyl Blue

  • Roy, Pantu Kumar;Fang, Xun;Hassan, Bahia MS;Shin, Sang Tae;Cho, Jong Ki
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.111-122
    • /
    • 2017
  • The objective of this experiment was to explore the effects of Roscovitine (Rosco) prior to in vitro maturation (IVM) of immature pig oocyte. Brilliant cresyl blue test has been used to select the good quality of oocyte. Specifically, the effects of Rosco exposure on nuclear and cytoplasmic maturation, diameter, intracellular glutathione (GSH) and reactive oxygen species (ROS), and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), and gene expression levels in SCNT embryos have been measured. Cumulus oocyte complexes (COCs) have been exposed in $75{\mu}M$ of Rosco for 22 and 44 h. The COCs that were matured in the IVM for 44 h without Rosco used as control group. Diameter of matured porcine oocytes 44 h culture with Rosco was significantly lower than 22 h culture with Rosco and control groups. GSH was higher in control group than 22 h and 44 h with Rosco but reduction of ROS in 22 h than 44 h with Rosco. In PA, exposure with Rosco 44 h oocytes group has been significantly lower than 22 h and control group in rates of maturation, cleavage and blastocyst formation. Similarly, in SCNT embryos rates of maturation, cleavage and formation of blastocyst have been also significantly lower in 44 h Rosco treated group than other two groups. SCNT embryos treated with Rosco 22 h showed greater expression levels of POU5F1, DPPA2 and NDP52Il mRNA compared with other two groups. Our results demonstrate that Rosco treatment with 22 h prior to IVM improves the development competence of porcine oocyte.

Effect of Type and Culture Time of Porcine Oocytes On in Vitro Maturation and Developmental Potential of Embryos (돼지 난포란의 형태와 배양시간이 체외성숙 및 수정란의 배발생능에 미치는 영향)

  • 이장희;김창근;정영채
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.73-83
    • /
    • 1994
  • The objective of this study was to develop an effective in vitro production system capable of obtaining more porcine embryos from immature oocytes. These experiments were thus conducted to examine the effect of oocytes type and maturation time on the in vitro maturation(IVM) and fertilization(IVF) of oocytes and the in vitro development (IVD)of IVF embryos. 1. The degree of oocyte maturation based on cumulus expansion index(GEI) did not differ for A- and B-typed oocytes but the index of oocyte type C was lower(P<0.05) than that of other oocyte types. 2. When the oocytes of type A and B were matured for 36, 42 and 48hrs, the GEl was not different between the 36- and 42-h maturation but the GEl after 48hrs was greatly lower(P<0.05) than that of other maturation times. 3. The highest cleavage rate(48.6%) of IVF oocytes was obtained from A typed oocytes and 42-h maturation but the developmental potential based on cleavage index was the highest when B-typed oocytes were matured for 42hrs.

  • PDF

Freezing and In Vitro Fertilization of Porcine Oocytes (돼지난포란의 동결과 체외수정에 관한 연구)

  • 이장희;김창근;정영채
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.355-362
    • /
    • 1997
  • This study was undertaken in an effort to product embryos through in vitro maturation(IVM), in vitro fertilization(IVF) and in vitro culture(IVC) after cryopreservation of immature and mature porcine oocytes. The experiments were conducted to investigate IVM rate of oocytes frozen with 3 different cryoprotectants and to examine IVF and IVC of frozen-thawed oocytes. The CEI(cumulus cells expansion index) after IVM of frozen-thawed immature oocytes was higher in oocytes frozen with PG+PEG(propylene glycol plus polyethylene glycol) than those frozen with single cryoprotectant and this index was almost 90% of unfrozen oocyte's index(2.39 vs. 2.66). The IVF rate of all frozen oocytes was very low(68% of unfrozen oocytes) and the IVF rate of frozen immature oocytes was slightly higher than that of frozen mature oocytes(39.0% vs. 34.4%), but polyspermic penetration was higher in frozen immature oocytes(21.9% vs. 19.1%). The cleavage rate after IVF of frozen-thawed oocytes was 9.3% for frozen mature oocytes and 11.3% for frozen immature oocytes and this rate was significantly lower(P<0.05) than that of control(60.7%). The development to 8-cell stage was greatly lower in frozen mature oocytes than in frozen immature oocytes. The results indicate that the use of PG plus PEG as cryoprotectant may be very effective for vitrification of porcine oocytes and the frozen-thawed immature porcine oocytes can be used fro in vitro embryo production based on IVM, IVF and IVC system.

  • PDF

Effects of Fetal Calf Serum and Porcine Follicular Fluid Fractionated by Gel Filtration on in vitro Maturation of Porcine Follicular Oocytes (Gel Filtration에 의해 분획된 소 태아혈청과 돼지난포액이 돼지난포란의 체외성숙에 미치는 효과)

  • 가학현;정구민;한정호;임경순
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.4
    • /
    • pp.251-258
    • /
    • 1996
  • These studies were carried out to investigate the effect of gonadotropins (GTH), fetal calf serum (FCS), porcine follicular fluid (pFF) and FCS and pFF fractions obtained by the gel filtration on in vitro maturation of porcine follicular fluid. When the oocytes were cultured in TCM-199, the maturation rate was higher in pFF than in FCS in both with or without GTH and in pFF the maturation rate was higher in with GTH than in without GTH. In case of without GTH, pFF increased maturation rates in TCM-199, but not in Whitten's medium (WM). When the oocytes were cultured in WM supplemented with FCS fractions, the maturation rate(51.6%) of oocytes was significantly (P<0.05) higher in fraction B (about 30∼70 kDa) than in control, FCS and other fractions. When oocytes were cultured in WM supplemented with pFF fractions, fractions B (about 30∼70 kDa) and D (about 1∼10 kDa) were significantly (P<0.05) higher than in control, pFF and other fractions. In conclusiion, the addition of gonadotropins into the maturation media was effective for oocyte maturation. The addition of pFF was more effective than addition of FCS for maturation of porcine oocytes in vitro. And fraction B from FCS and fractions B and D from pFF was effective for oocyte maturation.

  • PDF

Activation of MAP Kinase during Maturation in Porcine Ooctyes (돼지 미성숙란의 체외배양시 MAP Kinase의 활성)

  • 장규태;박미령;윤창현
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.3
    • /
    • pp.265-276
    • /
    • 1998
  • In an attempt to evaluate the function of MAP kinase of porcine oocytes and to develop a method of assessment for kinase activity, we used MBP as a substrate to detect the MAP kinase activity of porcine oocytes matured in in vitro. The MAP kinase which had lower activity during the first 20 hours of culture started to show an increased amount of activity at 25 hours at which a collapse in nuclear membrane was induced. Significant (P<0.05) a, pp.ared at 30 hours of being cultured. The gel phosphorylation method, MBP which has been known to be a substrate for kinase such as cdc2 kinase, was phosphorylated at two positions corresponding to ERK 1 (44kDa) and ERK2 (42 kDa) which are known as mammalian MAP kinase. The existence of MARKK and MAP kinase were identified with western blotting at 0 hour culture of immature GV oocytes. The amount of those proteins did not increase during 40 hours of culture, which suggest that the increase of MAP kinase activity was caused by phosphorylaton rather than due to change in protein amount. MAPKK and MAP kinase were shown to be dephosporylated with deactivated at M 1 stage by inhibition of protein synthesis with cycloheximide added at the strat following the cultrue. We have reulsts that indicate the existedence of MAP kinase cascade which was activated simultaneously with start of porcine oocyte maturation (GVBD).

  • PDF

Effects of BSA, PVA, Gonadotropins and Follicle Shell on In Vitro Maturation and In Vitro Fertilization of Porcine Oocytes

  • Cong, Pei-Qing;Song, Eun-Sook;Kim, Eui-Sook;Li, Zhao-Hua;Zhang, Yong-Hua;Yi, Young-Joo;Park, Chang-Sik
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.61-69
    • /
    • 2007
  • This study was designed to evaluate effects of BSA, PVA, gonadotropins and follicle shell during IVM of porcine oocytes and subsequent development to the blastocyst stage after IVF. Cumulus oocyte complexes (COCs) were cultured in TCM-199 media containing 4 mg/ml BSA and 1 mg/ml PVA during IVM for 44 hr. To compare the effect of gonadotropins on oocyte maturation, COCs were cultured with FSH+LH, FSH, LH and FSH-LH-free media during IVM. respectively. Also, different number of follicle shells (0, 2, 4 and 6) was used to examine whether the presence of follicle shell in culture medium affects oocyte maturation. The percentages of fertilization and blastocyst formation, respectively, were higher in the medium containing the PVA (49.0 and 17.9%) than those containing the BSA (40.0 and 12.2%). Significantly higher rates of Mil oocytes were in the presence of FSH+LH and FSH (88.6 and 85.1 %) compared to other treatments (64.0 and 53.4% at LH and FSH-LH-free media). Co-culture with inverted follicle shells in 2 ml maturation medium enhanced the developmental competence of porcine oocytes. In conclusion, PVA could be used as a macromolecules instead of BSA, and FSH and follicle shell played important roles in maturation of porcine oocytes.

Expression Pattern of Early Transcription Factors in Porcine Oocytes and Embryos

  • Kim, So Yeon;Lin, Tao;Lee, Joo Bin;Lee, Jae Eun;Shin, Hyun Young;Jin, Dong Il
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2019
  • Many transcription factors are involved in directing the growth of porcine oocytes. The localization and expression level of a given transcription factor often differ at each stage of early embryonic growth, which spans from fertilization to the formation of the blastocyst. A hallmark of the blastocyst stage is the separation of the endodermal and mesodermal ectoderm. The embryo's medium and its effects are known to be crucial during early development compared to the other developmental stages, and thus require a lot of caution. Therefore, in many experiments, early development is divided into the quality of oocyte and cumulus cells and used in experiments. We thought that we were also heavily influenced by genetic reasons. Here, we examined the expression patterns of five key transcription factors (CDX2, OCT4, SOX2, NANOG, and E-CADHERIN) during porcine oocyte development whose expression patterns are controversial in the pig to the literature. Antibodies against these transcription factors were used to determine the expression and localization of them during the early development of pig embryos. These results indicate that the expressions of key transcription factors are generally similar in mouse and pig early developing embryos, but NANOG and SOX2 expression appears to show speciesspecific differences between pig and mouse developing embryos. This work helps us better understand how the expression patterns of transcription factors translate into developmental effects and processes, and how the expression and localization of different transcription factors can crucially impact oocyte growth and downstream developmental processes.