• Title/Summary/Keyword: Populus $alba{\times}glandulosa$

Search Result 99, Processing Time 0.022 seconds

A Comparative Study on the Composition of Ectomycorrhizal Fungi in Pine and Poplar Stands (소나무목(林)과 포플러목(林)에 공생(共生)하는 외생균근균(外生菌根菌)의 동정(同定) 및 비교(比較))

  • Lee, Kyung-Joon;Kim, Yang-Sup
    • The Korean Journal of Mycology
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 1983
  • Ectomycorrhizal fungi in Pinus $rigida{\times}taeda$ and poplar stands (Populus $alba{\times}glandulosa$ and others) were collected in 1981 and 1982. A total of 39 mushrooms representing 15 genera were identified from the pine stand, and the major genera were Amanita, Lactarius, Russula, Laccaria, and Boletus. From the poplar stands 16 mushrooms representing 8 genera were identified and 13 of them were the same found in the pine stand. Amanita, Russula, Laccaria, and Leccinum are the major genera in the poplar stands. A single species of Boletus was found in large number in pine and poplar stands. Lactarius was not observed in the poplar stands, while Leccinum was not found in the pine stand. Cantharellus lutescens which has not been reported in Korea was collected in the pine stand.

  • PDF

Characterization of Gibberellic Acid-Stimulated Arabidopsis (GASA) gene to drought stress response in Poplar (Populus alba × P. glandulosa) (현사시나무 Gibberellic Acid-Stimulated Arabidopsis (GASA) 유전자의 발현 특성 및 건조 스트레스 내성 구명)

  • Choi, Hyunmo;Bae, Eun-Kyung;Choi, Young-Im;Yoon, Seo-Kyung;Lee, Hyoshin
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Gibberellic Acid-Stimulated Arabidopsis (GASA) genes are involved in plant hormone signaling, cell division and elongation, as well as in responses to stress conditions in plants. In this study, we isolated a GASA gene from hybrid poplar (Populus alba ${\times}$ P. glandulosa) and analyzed its physiological phenotype and molecular functions in poplar. PagGASA cDNA encodes a putative protein composed of 95 amino acids containing an N-terminal signal peptide and a conservative cysteine-rich C-terminal domain. Southern blot analysis revealed that one or two copies of the PagGASA are present in the poplar genome. The PagGASA transcripts were highly detected in flowers and roots. Moreover, the expression of PagGASA was induced by growth hormone (gibberellic acid) and stress hormones (abscisic acid, jasmonic acid, and salicylic acid). By using transgenic analysis, we showed that the upregulation of PagGASA in poplar provides high tolerance to drought stress. Therefore, our results suggest that PagGASA plays an important role in drought stress tolerance via stress-related plant hormone signaling in poplar.

Thermo-chemical Conversion of Poplar Wood (Populus alba × glandulosa) to Monomeric Sugars by Supercritical Water Treatment (초임계수에 의한 현사시나무의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Kyu-Sung;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.44-50
    • /
    • 2006
  • To characterize thermo-chemical feature of su gar conversion of woody biomass poplar wood (Populus alba${\times}$glandulosa ) by sub- and supercritical water was treated for 60s under subcritical (23 MPa, 325 and $350^{\circ}C$) and supercritical (23 MPa, 380, 400, and $425^{\circ}C$) conditions, respectively. Among degradation products undegraded poplar wood solids existed in aqueous products. As the treatment temperature increased, the degradation of poplar wood was enhanced and reached up to 83.1% at $425^{\circ}C$. The monomeric sugars derived from fibers of poplar wood by sub- and supercritical treatment were analyzed by high performance anionic exchange chromatography (HPAEC). Under the subcritical temperature ranges, xylan, main hemicellulose component in poplar wood, was preferentially degraded to xylose, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical condition. The highest yield of monomeric sugars amounts to ca. 7.3% based on air dried wood weight (MC 10%) at $425^{\circ}C$.

Culture and Regeneration of Populus alba × glandulosa Leaf Protoplasts Isolated from in vitro Cultured Explant (현사시나무 기내배양(器內培養) 엽육조직(葉肉組織)에서 분리(分離)된 원형질체(原形質体) 배양(培養) 및 식물체(植物体) 재분화(再分化))

  • Park, Young Goo;Son, Sung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.208-215
    • /
    • 1988
  • The leaf mesophyll protoplasts of Populus alba ${\times}$ glandulosa were isolated from leaf of plantlet in vitro and cultured for plant regeneration. The MS medium (minus $NH_4NO_3$) with 0.5 mg/l BAP and 2.0 mg/l 2, 4-D showed the moderate frequency of dividing protoplasts cultured by the liquid plating method during the first week of culture. The percentage of colony formation was revealed the highest frequency by the gauze contained semi-solid agar plating method after 5 weeks cultured. Ridding out the gauze, the micro-callus was formed on the same semi-solid medium in 8 weeks after protoplasts culture. For proliferation of callus, mini-callus was transferred on the MS solid medium with 0.5 mg/l 2, 4-D and 0.1 mg/l BAP 12 weeks after culture. Shoot regeneration occurred when the calli derived from protoplasts were cultured on MS medium with 1.0 mg/l zeatin and such shoots could be readily rooted on the one half strengthen MS medium with non-phytohormone. Rooting shoots were planted in green-house 22 weeks after protoplast culture.

  • PDF

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Bark Extractives of Several Populus Trees (몇가지 사시나무속 수종 수피의 추출성분)

  • Ham, Yeon-Ho;Kim, Jin-Kyu;Lee, Sang-Keuk;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The bark of P. alba × glandulosa, P. euramericana and P. nigra × maximounczii F1, several Populus trees, were collected, extracted with acetone-H2O(7:3, v/v), fractionated with hexane, chloroform and ethylacetate, and freeze dried to give some dark brown powder. Each fraction of the powder was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol and ethanol-hexane mixture as eluents and then identified by thin layer chromatography using TBA and 6% acetic acid as developing solvents. The structures of the isolated compounds were characterized by 1H, 13C and 2D-NMR tools including mass spectrometry. Most of the compounds were flavonoids and salicin derivatives as follows: (+)-catechin, taxifolin, aromadendrin, eriodictyol, naringenin, sakuranetin, sakuranetin-5-O-𝛽-D-glucopyranoside, neosaturanin, salireposide, p-coumaric acid, and aesculin from P. alba × glandulosa, (+)-catechin, salireposide, populoside and salicortin from P. euramericana and (+)-catechin, quercetin, padmatin, salireposide, populoside and salicortin from P. nigra × maximounczii F1.

Effect of the Growth Period on Bioethanol Production from the Branches of Woody Crops Cultivated in Short-rotation Coppices

  • Jo, Jong-Soo;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.360-370
    • /
    • 2019
  • Woody crops cultivated in short-rotation coppices are attractive sources of lignocellulosic materials for bioethanol production, since they are some of the most abundant renewable resources. In this study, we evaluated the effects of the growth period on bioethanol production using short-rotation woody crops (Populus nigra ${\times}$ Populus maxiwiczii, Populus euramericana, Populus alba ${\times}$ Populus glandulosa, and Salix alba). The carbohydrate contents of 3-year-old and 12-year-old short-rotation woody crop branches were 62.1-68.5% and 64.0-67.1%, respectively. The chemical compositions of 3-year-old and 12-year-old short-rotation woody crop branches did not vary significantly depending upon the growth period. However, the 3-year-old short-rotation woody crop branches (glucose conversion: 26-40%) were hydrolyzed more easily than their 12-year-old counterparts (glucose conversion: 19-24%). Furthermore, following the fermentation of enzymatic hydrolysates from the crop branch samples (by Saccharomyces cerevisiae KCTC 7296) to ethanol, the ethanol concentration of short rotation coppice woody crops was found to be higher in the 3-year-old branch samples (~ 0.18 g/g dry matter) than in the 12-year-old branch samples (~ 0.14 g/g dry matter). These results suggest that immature wood (3-year-old branches) from short-rotation woody crops could be a promising feedstock for bioethanol production.

Wood Quality of Populus nigra × maxmowiczii. (I) - Variation of Bulk Density, Wood Fiber Dimension, Microfibril Angle, and Number of Leaf Knot within Stem - (양황철나무의 재질(材質) (I) 용적밀도수(容積密度數), 목섬유(木纖維)치수 및 잎옹이 분포수(分布數)의 간내변수(幹內變數) -)

  • Park, Sang-Jin;Kang, Sun-Gu;Lee, Ki-Yeong;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 1990
  • To study the wood quality factors of Populus nigra $\times$ maxmowiczii known a rapidly growing species, the variations of green moisture contents, bulk density, wood fibre dimensions, microfibril angles, and number of leaf knot in stem wood were investigated. The heartwood contained a higher moisture content than the corresponding sapwood. Bulk density in radial patterns variations decrease outward from the pith, then increase toward the bark. The wood-fiber length and diameters had somewhat smaller values than on Populus alba $\times$ glandulosa or Populus euramericana. The microfibril angles decreased rapidly toward the outside, and their mean values were about 16 degree. The grain angles run nearly parallel to the cell axies. Number of leaf knot showed a fluctural change above ground level to a point near the base of the crown and then increased rapidly to the top of tree and average number of leaf knot varied exclusively from tree to tree.

  • PDF

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF