• 제목/요약/키워드: Population dynamics model

검색결과 145건 처리시간 0.025초

지속가능한 발전을 위한 환경용량의 산정과 토지이용형태 연구 - 수도권지역을 중심으로 - (Sustainable Land Use within a Limit of Environmental Carrying Capacity in Metropolitan Area, Korea)

  • 문태훈
    • 한국시스템다이내믹스연구
    • /
    • 제8권2호
    • /
    • pp.51-82
    • /
    • 2007
  • The purpose of this paper is exploring changes in land use pattern when considering environmental carrying capacity. A sustainable development requires a society to define sustainability constraints, environmental carrying capacity. Environmental carrying capacity can be defined as a level of human activity a region can sustain at a desired level of quality of environment. This concept of environmental carrying capacity can be applied to land use to explore sustainable land use pattern. Since land use pattern can affect environment in an important way, exploring sustainable land use pattern within the limit of environmental carrying capacity can suggest useful implications for a sustainable regional management and planning. For this purpose, this paper built the environmental carrying capacity land use model and applied it to the Metropolitan Area, Korea. System dynamics modeling methods was used to build the model. The model developed in this paper consisted of 6sectors; population, housing, industry, land, environment, and traffic sector. The model limits its main focus on the NO2 level as an indicator of quality of environment in Metropolitan Area. Box model was translated into system dynamics model and combined to urban dynamics model to estimate NO2 level, the maximum number of population, industry structure, housing and maximum amount of land use for industrial, housing, and green space that can sustain desirable NO2 level. Metropolitan area was divided into 16 areas and the model was applied to each area. Since NO2 is flowing in and out from each area, model was built to allow this transboundering nature of air pollutants. Based on the model estimation, several policy implications for a sustainable land use pattern was discussed.

  • PDF

알코올중독 프로세스 및 치유프로그램이 음주범죄 예측에 미치는 영향에 관한 동적 연구 (Alcoholic Process and System Dynamic Study of the Effects of Alcoholic Crime Forecast on Therapy programs)

  • 이상재;변상해
    • 한국시스템다이내믹스연구
    • /
    • 제16권3호
    • /
    • pp.31-48
    • /
    • 2015
  • The purpose of this paper is to simulate drinking population, an alcoholic abuser and an alcoholic through therapy programs and system dynamic model. Then we try to research relationship between an alcoholic crime and related therapy programs. The results of the model simulation were consistently increased drinking population and 3 types drinkers until 2020 years. Specially the growth rate of drinking abusers will be passing that of a drinking population. Second, It showed clearly the decreasing effects of drinking crime on therapy programs(clinical treatment, preventive displine and counseling treatment). Finally, it will be positvely necessary the long-term and various alcoholic therapy program for reducing the ratio of drinking abusers and an alcoholic. In the second place, government and medical centers must be established a concrete information systems for collecting alcoholic datum.

INTERVENTION STRATEGIES FOR THE DYNAMICS OF POPULATION WITH OVEREATING BEHAVIOR

  • MINHYE KIM;YONGKUK KIM;CHUNYOUNG OH
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권2호
    • /
    • pp.123-134
    • /
    • 2023
  • Disordered eating behaviors, such as overeating, are known to be contagious in the general population. The objective of our research is to find an optimal control strategy to reduce the social burden of unhealthy overeating behavior by establishing and analyzing a mathematical model for the social transmission dynamics of unhealthy overeating. We consider four compartments in the population: normal weight with normal eating behavior, normal weight with overeating behavior, overweight with normal eating behavior, and overweight with overeating behavior. Simulation results under various control scenarios show that integrated control measures may be necessary to reduce the growth rate of the overeating population.

Effects of Phenotypic Variation on Evolutionary Dynamics

  • Kang, Yung-Gyung;Park, Jeong-Man
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1774-1786
    • /
    • 2018
  • Phenotypic variation among clones (individuals with identical genes, i.e. isogenic individuals) has been recognized both theoretically and experimentally. We investigate the effects of phenotypic variation on evolutionary dynamics of a population. In a population, the individuals are assumed to be haploid with two genotypes : one genotype shows phenotypic variation and the other does not. We use an individual-based Moran model in which the individuals reproduce according to their fitness values and die at random. The evolutionary dynamics of an individual-based model is formulated in terms of a master equation and is approximated as the Fokker-Planck equation (FPE) and the coupled non-linear stochastic differential equations (SDEs) with multiplicative noise. We first analyze the deterministic part of the SDEs to obtain the fixed points and determine the stability of each fixed point. We find that there is a discrete phase transition in the population distribution when the probability of reproducing the fitter individual is equal to the critical value determined by the stability of the fixed points. Next, we take demographic stochasticity into account and analyze the FPE by eliminating the fast variable to reduce the coupled two-variable FPE to the single-variable FPE. We derive a quasi-stationary distribution of the reduced FPE and predict the fixation probabilities and the mean fixation times to absorbing states. We also carry out numerical simulations in the form of the Gillespie algorithm and find that the results of simulations are consistent with the analytic predictions.

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • 제27권6호
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.

ANALYSIS OF MALARIA DYNAMICS USING ITS FRACTIONAL ORDER MATHEMATICAL MODEL

  • PAWAR, D.D.;PATIL, W.D.;RAUT, D.K.
    • Journal of applied mathematics & informatics
    • /
    • 제39권1_2호
    • /
    • pp.197-214
    • /
    • 2021
  • In this paper, we have studied dynamics of fractional order mathematical model of malaria transmission for two groups of human population say semi-immune and non-immune along with growing stages of mosquito vector. The present fractional order mathematical model is the extension of integer order mathematical model proposed by Ousmane Koutou et al. For this study, Atangana-Baleanu fractional order derivative in Caputo sense has been implemented. In the view of memory effect of fractional derivative, this model has been found more realistic than integer order model of malaria and helps to understand dynamical behaviour of malaria epidemic in depth. We have analysed the proposed model for two precisely defined set of parameters and initial value conditions. The uniqueness and existence of present model has been proved by Lipschitz conditions and fixed point theorem. Generalised Euler method is used to analyse numerical results. It is observed that this model is more dynamic as we have considered all classes of human population and mosquito vector to analyse the dynamics of malaria.

해충발생동태 및 예찰모델 개발: 수원에서의 이화명나방 발생 사례 (Development of Insect Population Dynamics and Forecast Models: A Case of Chilo suppressalis(Walker) Occurrence in Suwan)

  • 이준호
    • 한국응용곤충학회지
    • /
    • 제38권3호
    • /
    • pp.231-240
    • /
    • 1999
  • 수원 지역에서의 이화명나방 발생의 장기적 경시적 변화 패턴을 분석하고 수원 지역에서의 이화명나방 봄나방(I화기) 발생시기 예찰 모델을 개발하였다.수원에서의 이화명나방의 개체군동태는 1965년부터 1996년까지 한 번의 큰 피크와 한 번의 작은 피크를 보인 주기적 변동을 보였으며 발생 변동의 큰 주기는 대략 36세대 (18년)로 분석되었다. 수원 지역에서의 이화명나방 발생동태는 l세대를 작은 주기로 하는 내적 유발성 주기성을 보였으며 전세대의 밀도의존성이 높은 제 l차 부의 피이드백 작용에 의해 지배되는 내적 동태성이 기본이었다. 이화명나방 개체군 변동 메카니즘은 밀도의 급격한 감소에도 불구하고 변화가 없었다.수원 지역의 이화명나방 발생 자료를 바탕으로 봄나방 발생시기 예찰 모델들(온도발육모델 및 온일도 모델)을 개발하였다.또한, 이화명나방 개체군 동태와 관련한 봄나방 성충 예찰 문제를 고찰하였다.

  • PDF

MATHEMATICAL MODELING FOR THE OBESITY DYNAMICS WITH PSYCHOLOGICAL AND SOCIAL FACTORS

  • Kim, Sehjeong;Kim, So-Yeun
    • East Asian mathematical journal
    • /
    • 제34권3호
    • /
    • pp.317-330
    • /
    • 2018
  • We develop a mathematical model for the obesity dynamics to investigate the long term obesity trend with the consideration of psychological and social factors due to the increasing prevalence of obesity around the world. Many mathematical models for obesity dynamics adopted the modeling idea of infectious disease and treated overweight and obese people infectious and spreading obesity to normal weight. However, this modeling idea is not proper in obesity modeling because obesity is not an infectious disease. In fact, weight gain and loss are related to social interactions among different weight groups not only in the direction from overweight/obese to normal weight but also the other way around. Thus, we consider these aspects in our model and implement personal weight gain feature, a psychological factor such as body image dissatisfaction, and social interactions such as positive support on weight loss and negative criticism on weight status from various weight groups. We show that the equilibrium point with no normal weight population will be unstable and that an equilibrium point with positive normal weight population should have all other components positive. We conduct computer simulations on Korean demography data with our model and demonstrate the long term obesity trend of Korean male as an example of the use of our model.

시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측 (Forecasting the Long-term Water Demand Using System Dynamics in Seoul)

  • 김신걸;변신숙;김영상;구자용
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

전력산업 인력수급 예측모형 개발 연구 (The Study on the Human Resource Forecasting Model Development for Electric Power Industry)

  • 이용석;이근준;곽상만
    • 한국시스템다이내믹스연구
    • /
    • 제7권1호
    • /
    • pp.67-90
    • /
    • 2006
  • A series of system dynamics model was developed for forecasting demand and supply of human resource in the electricity industry. To forecast demand of human resource in the electric power industry, BLS (Bureau of Labor Statistics) methodology was used. To forecast supply of human resource in the electric power industry, forecasting on the population of our country and the number of students in the department of electrical engineering were performed. After performing computer simulation with developed system dynamics model, it is discovered that the shortage of human resource in the electric power industry will be 3,000 persons per year from 2006 to 2015, and more than a double of current budget is required to overcome this shortage of human resource.

  • PDF