• 제목/요약/키워드: Population Growth Inhibition

검색결과 92건 처리시간 0.024초

Identification of 2-methylbutyric Acid as a Nematicidal Metabolite, and Biocontrol and Biofertilization Potentials of Bacillus pumilus L1

  • Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.401-408
    • /
    • 2016
  • The present study described the isolation of 2-methylbutyric acid (2-MBA) produced from Bacillus pumilus L1, to subsequently investigate its nematicidal activity for the control of the root-knot nematode. The results showed that 2-MBA could be purified by chromatographic techniques and was identified using nuclear magnetic resonance and liquid chromatography-mass spectrometry. Crude extract and partially purified compounds had a significant effect on the inhibition of egg hatchability and second-stage juvenile (J2) mortality. A dose-dependent effect of 2-MBA was observed for J2 mortality and egg hatchability. Egg hatchability was 69.2%, 59.9%, 32.7%, and 0.0% at 125, 250, 500, and $1000{\mu}g\;mL^{-1}$ of 2-MBA after 4 d of incubation, respectively. Meanwhile, J2 mortality was in the range of 24.4%-100.0% after 2 d of incubation, depending on the concentrations of 2-MBA used. A pot experiment also demonstrated that treatment of B. pumilus L1 culture caused a significant reduction in the number of galls, egg masses, and J2 population than that of the tap water (TW) control. However, as the B. pumilus L1 culture concentration was decreased, the efficacy of nematode control by treatment of B. pumilus L1 culture was reduced compared to that of TW. B. pumilus L1 inoculation at different concentrations also promoted cucumber plant growth. Therefore, our study demonstrated the potential of 2-MBA from B. pumilus L1 as a biocontrol agent against the root-knot nematode and a plant growth promoter for cucumber plants.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

How do Citrus Crops Cope with Aluminum Toxicity?

  • Arunakumara, K.K.I.U.;Walpola, Buddhi Charana;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.928-935
    • /
    • 2012
  • World Agriculture faces daunting challenges in feeding the growing population today. Reduction in arable land extent due to numerous reasons threatens achievement of food and nutritional security. Under this back ground, agricultural use of acidic soils, which account for approximately 40 % of the world arable lands is of utmost important. However, due to aluminum (Al) toxicity and low available phosphorous (P) content, crop production in acidic soils is restricted. Citrus, in this context, gains worldwide recognition as a crop adapted to harsh environments. The present paper reviewed Al toxicity and possible toxicity alleviation tactics in citrus. As reported for many other crops, inhibition of root elongation, photosynthesis and growth is experienced in citrus also due to Al toxicity. Focusing at toxicity alleviation, interaction between boron (B) and Al as well as phosphorus and Al has been discussed intensively. Al toxicity in citrus could be alleviated by P through increasing immobilization of Al in roots and P level in shoots rather than through increasing organic acid secretion, which has been widely reported in other crops. Boron-induced changes in Al speciation and/or sub-cellular compartmentation has also been suggested in amelioration of root inhibition in citrus. Despite the species-dependent manner of response to Al toxicity, many commercially important citrus species can be grown successfully in acidic soils, provided toxicity alleviation Agro-biological tactics such as addition of phosphorous fertilizers are used properly.

Inhibition of Cell-Cycle Progression in Human Promyelocytic Leukemia HL-60 Cells by MCS-C2, Novel Cyclin-Dependent Kinase Inhibitor

  • Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Chun, Moon-Woo;Lee, Seung-Ki;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.607-612
    • /
    • 2003
  • To elucidate the action mechanism of MCS-C2, a novel analogue of toyocamycin and sangivamycin, its effect on the expression of cell cycle-related proteins in the human myelocytic leukemia cell line HL-60 was examined using Western blotting and a flow cytometric analysis. MCS-C2, a selective inhibitor of cyclin-dependent kinases, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibits cell cycle progression by inducing the arrest at G1 and G2/M phases, in HL-60 cells. The flow cytometric analysis revealed an appreciable arrest of cells in the G2/M phase of the cell cycle after treatment with MCS-C2. The HL-60 cell population increased gradually from 13% at 0 h, to 28% at 12 h in the G2/M phase, after exposure to $2{\;}\mu\textrm{M}$ MCS-C2. Furthermore, Western blot analysis demonstrated that MCS-C2 induced the cell cycle arrest at G1 phase through the inhibition of pRb phosphorylation. Hypophosphorylated pRb accumulated after treatment with $5{\;}\mu\textrm{M}$ MCS-C2 for 12 h, whereas, the level of hyperphosphorylated pRb was reduced. Thus, treatment of the cell with MCS-C2 suppressed the hyperphosphorylated form of pRb with a commensurate increase in the hypophosphorylated form.

단삼 유래 Tanshinone IIA가 3T3-L1 세포의 아포토시스 유도와 지방형성 억제에 미치는 영향 (Effects of Tanshinone IIA from Salvia Miltiorrhiza Bunge on Induction of Apoptosis and Inhibition of Adipogenesis in 3T3-L1 Cells)

  • 정승일;이종우;장선일
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1409-1415
    • /
    • 2009
  • Obesity is especially a serious health problem in industrialized countries, because it is considered to be a risk factor associated with the genesis or development of various metabolic diseases, including cardiovascular disease and type 2 diabetes mellitus. The purpose of this study was to investigate the effects of tanshinone IIA from Salvia miltiorrhiza Bunge on induction of apoptossis and inhibition of adipogenesis in in 3T3-L1 preadipocytes and adipocytes. The results demonstrated that tanshinone IIA decreased cell population growth of 3T3-L1 preadipocytes, assessed with the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and LDH (lactate dehydrogenase) assay. Flow cytometric analysis of 3T3-L1 preadipocytes exposed to tanshinone IIA showed that apoptotic cells increased in a timeand dose-dependent manner. Treatment with tanshinone IIA decreased the number of normal cells and increased the number of apoptotic cells in a dose-dependent manner. The induction of apoptosis in 3T3-L1 preadipocytes by tanshinone IIA was mediated through the activation of caspase-3 and Bax, and then through the cleavage of PARP and the down-regulation of Bcl-2. Moreover, tanshinone IIA significantly decreased the amount of intracellular triglycerides and GPDH (glycerol-3-phosphate dehydrogenase) activity in 3T3-L1 adipocytes. Our results suggest that tanshinone IIA efficiently induces apoptosis and inhibits adipogenesis in 3T3-L1 preadipocytes and adipocytes.

Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

  • Park, Jiyeong;Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • 제30권3호
    • /
    • pp.288-298
    • /
    • 2014
  • We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review

  • Gangireddygari, Venkata Subba Reddy;Bontha, Rajasekhar Reddy;Yoon, Ju-Yeon
    • 인간식물환경학회지
    • /
    • 제23권4호
    • /
    • pp.399-410
    • /
    • 2020
  • The United Nations project the world population to reach 10 billion by the year 2057. To increase the food of the ever-increasing world population, agrochemicals are indispensable tools to the boon in agriculture production. These agrochemicals are a serious threat to the health of humans, plants, and animals. Agrochemicals are ultimately reached to the main reservoir/sink such as soil and contaminating the groundwater, disturb the soil health and in turn a serious threat to biogeochemical cycling and the entire biosphere. Among agrochemicals, quinalphosis one of the most repeatedly and widely used insecticides in the control of a wide range of pests that attack various crops. Quinalphos is shown to be primarily toxic in organisms by acetylcholinesterase enzyme action. Hydrolysis of quinalphos produces amajor metabolite 2-hydroxyquinoxaline (2-HQ), which has shown secondary toxicity in organisms. 2-HQ is reported to be mutagenic, carcinogenic, growth inhibition and induce oxidative stress in organisms. Quinoline is a heterocyclic compound and structural resemblance of 2-HQ with minor changes, but its degradation studies are enormous compared to the 2-HQ compound. Biotic factors in fate and behavior of 2-HQ in the environment are least studied. 2-HQ interactions with soil enzymes are vary from soil to soil. Based on the toxicity of 2-HQ in our stockpile we need to isolate a handful of microorganisms to treat this persistent metabolite and also other metabolites/compounds.This brief review will be significant from the point of biological and environmental safety.

Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+ T-Cell Proliferation and IL-2 Production in CD4+ T Cells

  • Hwang, Yun-Ho;Lee, Sung-Ju;Kang, Kyung-Yun;Hur, Jae-Seoun;Yee, Sung-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1189-1197
    • /
    • 2017
  • Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of $CD8^+$ T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of $CD8^+$ T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and $IFN-{\gamma}$ as the $CD8^+$ T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain ($IL-2R{\alpha}$) on $CD8^+$ T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, $IFN-{\gamma}$, and CD69 on $CD8^+$ T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of $IL-2R{\alpha}$ expression in $CD8^+$ T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

Inhibition of Human Pancreatic Tumor Growth by Cytokine-Induced Killer Cells in Nude Mouse Xenograft Model

  • Kim, Ji Sung;Park, Yun Soo;Kim, Ju Young;Kim, Yong Guk;Kim, Yeon Jin;Lee, Hong Kyung;Kim, Hyung Sook;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.247-252
    • /
    • 2012
  • Pancreatic cancer is the fourth commonest cause of cancer-related deaths in the world. However, no adequate therapy for pancreatic cancer has yet been found. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against the human pancreatic cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 for 14 days. The resulting populations of CIK cells comprised 94% $CD3^+$, 4% $CD3^-CD56^+$, 41% $CD3^+CD56^+$, 11% $CD4^+$, and 73% $CD8^+$. This heterogeneous cell population was called cytokine-induced killer (CIK) cells. At an effector-target cell ratio of 100 : 1, CIK cells destroyed 51% of AsPC-1 human pancreatic cancer cells, as measured by the $^{51}Cr$-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 42% and 70% of AsPC-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for pancreatic cancer patients.

한약제 진피의 항 톡소포자충 효과 확인 (Anti-Toxoplasmosis Effect of Citrus Unshiu Markovich against Toxoplasma Gondii)

  • 김혜경;강경화;이동환;김혜숙;박현
    • 동의생리병리학회지
    • /
    • 제22권1호
    • /
    • pp.96-99
    • /
    • 2008
  • Toxoplasma gondiiis a widespread apicomplexan parasite which is able to infect virtually all warm-blooded vertebrates. Twenty-two percent of the U.S. population is infected, but severe disease in adults is mainly limited to immunosuppressed patients. In patients with acquired immunodeficiency syndrome(AIDS), T. gondii causes a life-threatening opportunistic infection, with Toxoplasma encephalitis as its most severe manifestations. T. gondii is also known to cause congenital infection and is among the pathogens with the highest incidence of complications in pregnancies. Despite its clinical importance, only very few therapeutic drugs against T. gondii are available, all of which target the rapidly dividing tachyzoites, leaving the dormant encysted bradyzoite stage unaffected. We searched 15 traditional medicines that have anti-inflammatory effect from dongyibogam and Traditional Chinese medicine. In vitro studies were performed with HeLa cell cultures, with quantification of Toxoplasma growth by a cell proliferation assay. The result of experiment shows the selectivity of Citrus unshiu Markovich is 6.0. This is higher than sulfadiazine (selectivity was 1.63). For in vivo studies, mice were acutely infected intraperitoneally with $10^5$ tachyzoites of the virulent RH strain and then treated per orally for 4 days from 6 hours postinfection. Efficacy was assessed by sequential determination of parasite burdens in peritoneal cavity. In vivo, Citrus unshiu Markoviche inhibited Toxoplasma growth at a concentration of 10㎎/㎏ of body weight per day, the inhibition ratio was estimated to be 64.01%.