DOI QR코드

DOI QR Code

Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

  • Park, Jiyeong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Seo, Yunhee (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Young Ho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.02.05
  • Accepted : 2014.04.21
  • Published : 2014.09.01

Abstract

We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

Keywords

References

  1. Barker, K. R. 1985. Nematode extractions and bioassays. In: An advanced treatise on Meloidogyne, Vol. II. Methodology, ed. by K. R. Barker, C. C. Carter and J. N. Sasser, pp. 19-35. North Carolina State University, Raleigh, NC, USA.
  2. Belair, C. 1984. Tolerance of carrot cultivars to northern rootknot nematode as influenced by preplant population densities. Phytoprotection 65:69-73.
  3. Bonants, P. J. M., Fitters, P. F. L., Thijs, H., Belder, E. D., Waalwijk, C. and Henfling, J. W. D. M. 1995. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiol. 141:775-784. https://doi.org/10.1099/13500872-141-4-775
  4. Brown, E. B. 1978. Cultural and biological control methods. In: Southey JF, ed. Plant Nematology, 3rd ed. London, UK: Her Majesty's Stationery Office, 269-82.
  5. Carneiro, R. M. D. G., De Souza, I. S. and Belarmino, L. C. 1998. Nematicidal activity of Bacillus spp. strains on juveniles of Meloidogyne javanica. Nematol. Brasileira. 22:12-21.
  6. Cayrol, J. C., Djian, C. and Pijarowski, L. 1989. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev. Nematol. 12: 331-336.
  7. Chang, W. T., Chen, Y. C. and Jao, C. L. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 98:1224-1230. https://doi.org/10.1016/j.biortech.2006.05.005
  8. Chen, J., Abawi, G. S. and Zuckerman, B. M. 2000. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J. Nematol. 32: 70-77.
  9. De Leij, F. A. A. M., Kerry, B. R. and Dennehy, J. A. 1993. Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in pot and micro-plot tests. Nematologica 39:115-126. https://doi.org/10.1163/187529293X00097
  10. Dhingra, O. D. and Sinclair, J. B. 1985. Basic plant pathology methods. CRC Press, Inc. Boca Raton, FL, USA. 355 pp.
  11. Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological control of damping-off alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56:713-718.
  12. Hartman, K. M. and Sasser, J. N. 1985. Identification of Meloidogyne species on the basis of differential host test and perinealpattern morphology. In: An advanced treatise on Meloidogyne, Vol. II. Methodology, ed. by K. R. Barker, C. C. Carter and J. N. Sasser, pp. 69-77. North Carolina State University, Raleigh, NC, USA.
  13. Huang, C. J., Wang, T. K., Chung, S. C. and Chen, C. Y. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38:82-88. https://doi.org/10.5483/BMBRep.2005.38.1.082
  14. Jeon, Y. H., Chang, S. P., Hwang, J. and Kim, Y. H. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13:881-891.
  15. Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27:137A.
  16. Kim, D., Ryu, Y., Park, H., Huh, C. and Bae, C. 2013. Resistance of commercial tomato cultivars to Meloidogyne arenaria and M. incognita. Res. Plant Dis. 19:25-30 (in Korean). https://doi.org/10.5423/RPD.2013.19.1.025
  17. Kim, D. G. 2001. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Dis. 7:69-79 (in Korean).
  18. Kim, D. G. and Choi, S. K. 2001. Effects of incorporation method of nematicides on reproduction of Meloidogyne arenaria. Kor. J. Appl. Entomol. 40:89-95 (in Korean).
  19. Kim, D. G., Choi, D. R. and Lee, S. B. 2001a. Effects of control methods on yields of Oriental melon in fields infested with Meloidogyne arenaria. Res. Plant Dis. 7:42-48 (in Korean).
  20. Kim, D. G., Lee, Y. G. and Park, B. Y. 2001b. Root-knot nematode species distributing in greenhouses and their simple identification. Res. Plant Dis. 7:49-55 (in Korean).
  21. Kim, Y. H. 1990. Structural changes in nonhost response of cowpea and tomato to infection by the soybean cyst nematode. Korean J. Plant Pathol. 6:421-424.
  22. Kim, Y. H. and Ohh, S. H. 1990. Anatomical evidence on the differentiation of xylem vessels around the giant cells induced by the root-knot nematode. Kor. J. Plant Pathol. 6:417-420.
  23. Kim, Y. H., Kim, K. S. and Riggs, R. D. 1986. Morphological characteristics of synchtia in susceptible hosts infected by the soybean cyst nematode. Phytopathology 76:913-917. https://doi.org/10.1094/Phyto-76-913
  24. Leyns, F., Borgonie, G., Arnaut, G. and De Waele, D. 1995. Nematicidal activity of Bacillus thuringiensis isolates. Fundam. Appl. Nematol. 18:211-218.
  25. Liu, T., Wang, L., Duan, Y. X. and Wang, X. 2008. Nematicidal activity of culture filtrate of Beauveria bassiana against Meloidogyne hapla. World J. Microbiol. Biotechnol. 23: 113-118.
  26. Mahdy, M., Hallmann, J. and Sikora, R. A. 2000. Biological control of different species of the root-knot nematode Meloidogyne with the plant health-promoting rhizobacterium Bacillus cereus S18. Com. Agri. Biol. Sci. 65:545-549.
  27. Mennan, S., Chen, S. and Melakeberhan, H. 2006. Suppression of Meloidogyne hapla populations by Hirsutella minnesotensis. Biocont. Sci. Technol. 16:181-193. https://doi.org/10.1080/09583150500258610
  28. Moon, H. S., Khan, Z., Kim, S. G., Son, S. H. and Kim, Y. H. 2010. Biological and structural mechanisms of disease development and resistance in chili pepper infected with the rootknot nematode. Plant Pathol. J. 26:149-153. https://doi.org/10.5423/PPJ.2010.26.2.149
  29. Noling, J. W. and Becker, J. O. 1994. The challenge of research and extension to define and implement alternatives to methyl bromide. J. Nematol. 26:573-586.
  30. Oh, H. K., Bae, C. H. Kim, M. I., Wan, X., Oh, S. H., Han, Y. S., Lee, H. B. and Kim, I. 2009.Molecular biological diagnosis of Meloidogyne species occurring in Korea. Plant Pathol. J. 25:247-255. https://doi.org/10.5423/PPJ.2009.25.3.247
  31. Oka, Y., Chet, I. and Spiegel, Y. 1993. Control of the root-knot nematode Meloidogyne javanica by Bacillus cereus. Biocont. Sci. Technol. 3:115-126. https://doi.org/10.1080/09583159309355267
  32. Oka, Y., Koltai, H., Bar-Eyal, M., Mor, M., Sharon, E., Chet, I. and Spiegel, Y. 2000. New strategies for the control of plantparasitic nematodes. Pest Manag. Sci. 56:983-988. https://doi.org/10.1002/1526-4998(200011)56:11<983::AID-PS233>3.0.CO;2-X
  33. Osman, A. A. and Viglierchio, D. R. 1981. Herbicide effects in nematode diseases. J. Nematol. 13:544-546.
  34. Park, S. D., Park, S. D., Choi, B. S. and Choi, Y. E. 1994. Annual phenology of root-knot nematode in the medicinal herb (Paeonia lactiflora) field. Korean J. Appl. Entomol. 33:159-162.
  35. Park, S. D., Park, S. D., Kwon, T. Y., Choi, B. S., Lee, W. S. and Choi, Y. E. 1995. Study on integrated control against rootknot nematode of fruit vegetables (oriental melon and cucumber) in vinyl house. Korean J. Appl. Entomol. 34:75-81.
  36. Roberts, P. A., Dalmasso, A., Cap, G. B. and Castagnone-Sereno, P. 1990. Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. J. Nematol. 22:585-589.
  37. Ryan, K. 2004. Plague and other bacterial zoonotic diseases. In: Medical microbiology: An introduction to infectious diseases, 4th ed., ed. by J. C. Sherris, K. J. Ryan and C. G. Ray, pp. 481-491. McGraw-Hill, USA.
  38. Sasser, J. N. 1977. Worldwide dissemination and importance of the root-knot nematodes, Meloidogyne spp. J. Nematol. 9: 26-29.
  39. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria, 3rd ed. APS Press. St Paul, MN, USA.
  40. Seo, Y., Park, J., Kim, Y. S., Park, Y. and Kim, Y. H. 2014. Screening and histopathological characterization of Korean carrot lines for resistance to the root-knot nematode Meloidogyne incognita. Plant Pathol. J. 30:75-81. https://doi.org/10.5423/PPJ.OA.08.2013.0082
  41. Silva, H. S., Romeiro, R. S., Filho, R. C., Pereira, J. L. A., Mizubuti, E. S. G. and Mounteer, A. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J. Phytopathol. 152:371-375. https://doi.org/10.1111/j.1439-0434.2004.00853.x
  42. Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2009. Plant growthpromoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and Fusarium wilt fungus. J. Appl. Microbiol. 107:524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  43. Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture Fisheries and Food. HMSO. London. UK.
  44. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  45. Townshend, J. C., Meskine, M. and Barron, G. L. 1989. Biological control of Meloidogyne hapla on alfalfa and tomato with the fungus Meria coniospora. J. Nematol. 21:179-183.
  46. Viaene, N. M. and Abawi, G. S. 2000. Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce. J. Nematol. 32:85-100.
  47. Whipps, J. M. and Davies, K. G. 2000. Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten S, eds. Biological Control: Measures of Success. London, UK: Kluwer Academic Publishers, 231-70.
  48. Yoon, J. H., Lee, S. T. and Park, Y. H. 1996. Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48:187-194.
  49. Yu, Z. Q., Luo, H., Xiong, J., Yin, J., Hu, S. B., Ding, X. Z. and Xia, L. Q. 2012. Identification and nematicidal activity assay on root-knot nematode of a Bacillus strain. J. Agri. Biotechnol. 20:669-675.
  50. Zhang, F., Peng, D., Ye, X., Yu, Z., Hu, Z., Ruan, L. and Sun. M. 2012. In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLos One 7:e38534. https://doi.org/10.1371/journal.pone.0038534

Cited by

  1. Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita vol.21, pp.2, 2015, https://doi.org/10.5423/RPD.2015.21.2.050
  2. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0156230
  3. Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes 2017, https://doi.org/10.1016/j.biocontrol.2017.07.010
  4. Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici by Verticillium leptobactrum 2018, https://doi.org/10.1007/s11356-017-0233-6