The present research studied the relationship between children's social competence and popularity and examined popularity variables for the prediction of children's social competence. The subjects of this study were 80 children, 40 boys and 40 girls at age 5. Children's social competence was measured by the children's teachers with the use of the Social Competence Scale (Kohn & Rossman, 1972). Children's popularity and unpopularity were obtained from the subjects with the use of Moore's (1973) Sociometric Status Test. Teacher's estimate of the popularity of children was obtained with the use of Connolly & Doyle's (1981) Teacher Rankings of Popularity. The analysis of the data was by Pearson's Correlation Coefficient, and Stepwise Multiple Regression. There were significant relationships between children's social competence and popularity (children's popularity, children's unpopularity, teacher's popularity). Teacher's estimate of child's popularity was the best variable with which to predict children's social competence, the second best variable was children's popularity as measured by Moore's Sociometric Test.
Online discussion bulletin in Korea is not only a specific place where user exchange opinions but also a public sphere through which users discuss and form public opinion. Sometimes, there is a heated debate on a topic and any article becomes a political or sociological issue. In this paper, we propose how to analyze the popularity of articles by collecting the information of articles obtained from two well-known discussion forums such as AGORA and SEOPRISE. And we propose a prediction model for the article popularity by applying the characteristics of subject articles. Our experiment shown that the popularity of 87.52% articles have been saturated within a day after the submission in AGORA, but the popularity of 39% articles is growing after 4 days passed in SEOPRISE. And we observed that there is a low correlation between the period of popularity and the hit count. The steady increase of the hit count of an article does not necessarily imply the final hit count of the article at the saturation point is so high. In this paper, we newly propose a new prediction model called 'baseline'. We evaluated the predictability for popular articles using three models (SVM, similar matching and baseline). Through the results of performance evaluation, we observed that SVM model is the best in F-measure and precision, but baseline is the best in running time.
In this study, models for predicting the popularity of mukbang content on YouTube were proposed, and factors influencing the popularity of mukbang content were identified through post-analysis. To accomplish this, information on 22,223 pieces of content was collected from top mukbang channels in terms of subscribers using APIs and Pretty Scale. Machine learning algorithms such as Random Forest, XGBoost, and LGBM were used to build models for predicting views and likes. The results of SHAP analysis showed that subscriber count had the most significant impact on view prediction models, while the attractiveness of a creator emerged as the most important variable in the likes prediction model. This confirmed that the precursor factors for content views and likes reactions differ. This study holds academic significance in analyzing a large amount of online content and conducting empirical analysis. It also has practical significance as it informs mukbang creators about viewer content consumption trends and provides guidance for producing high-quality, marketable content.
In social network services, such as Facebook, Google+, Twitter, and certain postings attract more people than others. In this paper, we propose a novel method for predicting the lifespan and retweet times of tweets, the latter being a proxy for measuring the popularity of a tweet. We extract information from retweet graphs, such as posting times; and social, local, and content features, so as to construct prediction knowledge bases. Tweets with a similar topic, retweet pattern, and properties are sequentially extracted from the knowledge base and then used to make a prediction. To evaluate the performance of our model, we collected tweets on Twitter from June 2012 to October 2012. We compared our model with conventional models according to the prediction goal. For the lifespan prediction of a tweet, our model can reduce the time tolerance of a tweet lifespan by about four hours, compared with conventional models. In terms of prediction of the retweet times, our model achieved a significantly outstanding precision of about 50%, which is much higher than two of the conventional models showing a precision of around 30% and 20%, respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.9
/
pp.3635-3654
/
2015
With the rapid development of smart devices and mobile Internet, the video application plays an increasingly important role on mobile devices. Understanding user behavior patterns is critical for optimized operation of mobile live streaming systems. On the other hand, volume based billing models on cloud services make it easier for video service providers to scale their services as well as to reduce the waste from oversized service capacities. In this paper, the watching behaviors of a commercial mobile live streaming system are studied in a content-centric manner. Our analysis captures the intrinsic correlation existing between popularity and watching intensity of programs due to the synchronized watching behaviors with program schedule. The watching pattern is further used to estimate traffic volume generated by the program, which is useful on data volume capacity reservation and billing strategy selection in cloud services. The traffic range of programs is estimated based on a naive popularity prediction. In cross validation, the traffic ranges of around 94% of programs are successfully estimated. In high popularity programs (>20000 viewers), the overestimated traffic is less than 15% of real happened traffic when using upper bound to estimate program traffic.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.5
/
pp.1414-1430
/
2022
Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.
Communications for Statistical Applications and Methods
/
v.31
no.4
/
pp.441-457
/
2024
Semicontinuous data are characterized by a mixture of a point probability mass at zero and a continuous distribution of positive values. This type of data is often modeled using a two-part model where the first part models the probability of dichotomous outcomes -zero or positive- and the second part models the distribution of positive values. Despite the two-part model's popularity, variable selection in this model has not been fully addressed, especially, in high dimensional data. The objective of this study is to investigate variable selection and prediction performance of penalized regression methods in two-part models. The performance of the selected techniques in the two-part model is evaluated via simulation studies. Our findings show that LASSO and ENET tend to select more predictors in the model than SCAD and MCP. Consequently, MCP and SCAD outperform LASSO and ENET for β-specificity, and LASSO and ENET perform better than MCP and SCAD with respect to the mean squared error. We find similar results when applying the penalized regression methods to the prediction of crime incidents using community-based data.
The market share of online platform services in the used car market continues to expand. And The used car online platform service provides service users with specifications of vehicles, accident history, inspection details, detailed options, and prices of used cars. SUV vehicle type's share in the domestic automobile market will be more than 50% in 2023, Sales of Hybrid vehicle type are doubled compared to last year. And these vehicle types are also gaining popularity in the used car market. Prior research has proposed a used car price prediction model by executing a Machine Learning model for all vehicles or vehicles by brand. On the other hand, the popularity of SUV and Hybrid vehicles in the domestic market continues to rise, but It was difficult to find a study that proposed a used car price prediction model for these vehicle type. This study selects a used car price prediction model by vehicle type using vehicle specifications and options for Sedans, SUV, and Hybrid vehicles produced by domestic brands. Accordingly, after selecting feature through the Lasso regression model, which is a feature selection, the ensemble model was sequentially executed with the same sampling, and the best model by vehicle type was selected. As a result, the best model for all models was selected as the CBR model, and the contribution and direction of the features were confirmed by visualizing Tree SHAP Value for the best model for each model. The implications of this study are expected to propose a used car price prediction model by vehicle type to sales officials using online platform services, confirm the attribution and direction of features, and help solve problems caused by asymmetry fo information between them.
Jo, Nam-Hoon;Song, Kyung-Bin;Roh, Young-Su;Kang, Dae-Seung
The Transactions of the Korean Institute of Electrical Engineers A
/
v.55
no.7
/
pp.306-312
/
2006
Support Vector Machine(SVM), of which the foundations have been developed by Vapnik (1995), is gaining popularity thanks to many attractive features and promising empirical performance. In this paper, we propose a new short-term load forecasting technique based on SVM. We discuss the input vector selection of SVM for load forecasting and analyze the prediction performance for various SVM parameters such as kernel function, cost coefficient C, and $\varepsilon$ (the width of 8 $\varepsilon-tube$). The computer simulation shows that the prediction performance of the proposed method is superior to that of the conventional neural networks.
Jo, In Gu;Kong, Younwoo;Jeon, Soyi;Cho, Seoyeong;Lee, DoHoon
Journal of Korea Multimedia Society
/
v.25
no.2
/
pp.215-220
/
2022
Emotion recognition is one of the most important and challenging areas of computer vision. Nowadays, many studies on emotion recognition were conducted and the performance of models is also improving. but, more research is needed on emotion recognition and sentiment analysis of video viewers. In this paper, we propose an emotion analysis system the includes a sentiment analysis model and an interest prediction model. We analyzed the emotional patterns of people watching popular and unpopular videos and predicted the level of interest using the emotion analysis system. Experimental results showed that certain emotions were strongly related to the popularity of videos and the interest prediction model had high accuracy in predicting the level of interest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.