
418   Yongjin Bae et al. © 2014             ETRI Journal, Volume 36, Number 3, June 2014 
http://dx.doi.org/10.4218/etrij.14.0113.0657 

In social network services, such as Facebook, Google+, 
Twitter, and certain postings attract more people than 
others. In this paper, we propose a novel method for 
predicting the lifespan and retweet times of tweets, the 
latter being a proxy for measuring the popularity of a 
tweet. We extract information from retweet graphs, such 
as posting times; and social, local, and content features, so 
as to construct prediction knowledge bases. Tweets with a 
similar topic, retweet pattern, and properties are 
sequentially extracted from the knowledge base and then 
used to make a prediction. To evaluate the performance of 
our model, we collected tweets on Twitter from June 2012 
to October 2012. We compared our model with 
conventional models according to the prediction goal. For 
the lifespan prediction of a tweet, our model can reduce 
the time tolerance of a tweet lifespan by about four hours, 
compared with conventional models. In terms of 
prediction of the retweet times, our model achieved a 
significantly outstanding precision of about 50%, which is 
much higher than two of the conventional models showing 
a precision of around 30% and 20%, respectively. 
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I. Introduction 

Social network services (SNSs), such as Twitter, Facebook, 
and Google+, are a relatively new phenomenon in the Web 2.0 
of user-generated contents. One of the most popular SNSs is 
Twitter. When a user publishes a tweet, which should be no 
longer than 140 characters, followers can subscribe to the 
user’s postings in Twitter. Twitter’s popularity and 
pervasiveness of information seem to have been further 
increased thanks to the proliferation of mobile devices.  

Predicting the popularity of a tweet has emerged as a major 
concern in a variety of fields. Based on this information, 
companies want to promote products through online 
advertisements [1]. Public organizations can also take 
advantage of the tweets predicted to be popular to confront 
future social phenomena. To meet the social needs of users we 
should predict the popularity of tweets. The popularity of a 
tweet can be defined as follows [2]: 

(a) How many times will it be retweeted?  
(b) How long will it remain popular? 
 Case (a) is based on the number of retweets from other users, 

and (b) takes in to consideration the lifespan of a tweet.  
Figure 1 shows the different retweet patterns in Twitter used in 
the experiment. Tweets 1, 2, and 3 are about a disaster, politics, 
and daily life, respectively. We can see the properties of the 
tweets when comparing the three graph patterns. Tweets 1 and 
2 were retweeted about 300 times. However, in terms of 
lifespan, they developed differently over time. Tweet 1 was 
retweeted 300 times within a very short time period. However, 
it did not receive any more attention after one hour. 

On the contrary, we observed tweet 2 steadily propagate after 
24 hours. Based on the comparison of tweets 1 and 2, we 
assume that the lifespan of a tweet is an important factor of its  
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Fig. 1. Difference in retweet patterns. 
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popularity. In addition, through a comparative analysis of 
tweets 2 and 3, we found that the number of retweets is a factor 
for predicting popularity. Tweets 2 and 3 were consistently 
retweeted over a 25 hour period. However, Tweet 3 was not 
shared by a large number of users.   

To tackle the above problems, we propose an algorithm for 
predicting the lifespan of a tweet and the number of times it is 
retweeted, which is a proxy for measuring its popularity. The 
rest of this paper is organized as follows. Section II introduces 
Twitter. Section III investigates related work, and section IV 
describes the features for prediction knowledge bases. Section 
V explains the algorithm. Section VI describes a performance 
evaluation of the proposed model as compared with 
conventional models. Finally, the conclusion is presented in 
section VII. 

II. Understanding Twitter 

We describe the Twitter system and the terms used. A simple 
social graph of Twitter is shown in Fig. 2. Twitter allows user C 
to follow user A if so interested. After following user A, user C 
will receive the tweets written by A. Based on this relation, we 
can say that user C is user A’s follower, and user A is user C’s 
followee. When two users are following each other, they are 
considered friends, as in users A and B in Fig. 2.  

To represent the propagation of information, we create a 
retweet graph that is a type of directed graph. A retweet graph is 
 

 

Fig. 2. Example of a social graph in Twitter. 

A

C B 

 

created for each seed tweet (there are three types of tweet: 
normal tweet, retweet, and reply; with a seed tweet being a 
normal tweet). Retweet graph G = (V, E) is made up of set V  
consisting of retweeters and the author of the tweet and set E 
consisting of edges connecting the author and the retweeters. 

III. Related Works 

1. Predicting the Number of Retweets  

Hong and others [3] classified the features of a tweet into  
four distinct sets and generated a training model using a logistic 
regression algorithm. They generated two prediction models: 
one is to classify whether the target tweet is retweeted or not, 
and the other is to predict the number of retweets. Unankard 
and others [4] proposed various approaches such as a prior 
model, which has been proven superior to the normal case [5], 
[6]. A classification approach based on user preference showed 
outstanding results. They assumed that people’s interests in 
types of tweets differ, just as people’s interests differ. They 
called this phenomenon “user preference.” Zhang and others 
[7] categorized the tweets based on the events and predicted the 
number of retweets by simulating a retweet curve. A retweet 
curve represents the number of retweets in a successive time 
unit.  

2. Predicting the Lifespan of a Tweet 

Kong and others [2] defined the lifespan of a tweet as the 
period between when a tweet is created and when its last 
retweet is made. In their study, after analyzing the retweet 
patterns of an author’s target tweet—for a period of one hour 
from the time it was first posted—they compared the retweet 
patterns of the same author’s tweets written prior to the target 
tweet and extracted the top k tweets that showed similar 
patterns to the target tweet. Finally, they inferred the target 
tweet’s lifespan by averaging the lifespan of the top k tweets. 

3. Predicting the Possibility of a Response 

The possibility of a response to a tweet is defined as the 
likelihood that either a retweet or reply will occur. Artzi and 
others [8] classified the features: historical, social, aggregate 
lexical, local contents, posting, and sentiment into four distinct 
sets and created a training model using the multiple additive 
regression trees (MART) algorithm. As a result, they found that 
the social features (follower or followee) have a significant 
impact upon the possibility of a retweet. In another related 
work, Zaman and others [9] confined the response to a retweet 
and employed the social and tweet features in their prediction 
model. They assumed that the possibility of a retweet will be  
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different depending on the time of posting and created an 
hourly training model using the passive-aggressive algorithm. 
Consequently, they achieved a more precise prediction 
capability than a human user. The results of the experiment 
implied that social features are the most effective. The authors 
in [10] also confined the response to a retweet and used item 
and user features to build a prediction model. To predict the 
likelihood of a retweet, they built a prediction model called 
“Match Box” and found that the author of a tweet and its 
retweeters have a significant effect on the capability of 
predicting retweet times. 

IV. Features for Prediction Knowledge Bases 

We divide the features into four distinct sets: social features, 
content features, posting time features, and local features. 
These features are listed in Table 1. 

1. Social Features 

A. Followers 

According to [11], the number of retweets of a user’s tweet is 
proportional to the number of their followers. A tweet written 
by a user with many followers has a high possibility of being 
retweeted. We assume given any two users having a similar 
number of followers that the number of retweets for each user 
will also be similar.  

B. User Reliability 

Despite having many followers, a user cannot be regarded as 
a social influencer. According to Twitter’s policy [12], a user 
who has more followers than followees is considered a 
spammer. The number of followers can be represented by  
dO(vi) of user vi and the number of followees by dI(vi). We can 
measure the reliability of a twitter account—namely, R(vi)— 
based on the proportion of followers and followees by 
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Table 1. Features of the prediction knowledge base. 

Features Components 

Social  Number of followers, user reliability, user activity 

Content  Tweet text, tweet informativeness 

Posting time  Post time of tweet 

Local  
Duration of the retweet interval, retweet time of  

the time interval 

 

C. User Activity 

Through Twitter, users post information in real-time. An 
active user, who posts a lot, has a high possibility of being 
retweeted, and we can call such a user an influencer [13]. We 
therefore look to measure a user’s activity, which can then be 
used as the standard for predicting the possibility of a retweet. 
The activity of user vi (that is, A(vi)) results from the number of 
tweets per day and is given by 

   ( )
,

  ( )
i

i
i
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A v

account creationdate v
           (2) 

where status (vi) is the number of tweets currently generated 
and account creation date (vi) is the number of days from the 
account creation to the present date. 

2. Content Features 

A. Tweet Text 

Tweets written by various users fill the Twitter stream. In 
[14], the most popular topics in Twitter were determined to be 
world issues and travel information. Second, users are 
interested in technology, sports, and so on. In [15], the authors 
verified that propagation of tweets differ depending on the 
topic. Therefore, we should predict the popularity of a tweet 
differently depending on its topic. For a given target, we 
measured the similarity between target and prediction 
knowledge base using the Jaccard similarity coefficient.  

B. Tweet Informativeness 

Twitter allows users to post short messages of 140 characters 
or less. Tweets exceeding 140 characters insert a URL to add 
further information. Because of this limitation, the length of a 
tweet and the inclusion of a URL form the basic criteria when 
judging informativeness. The informativeness of tweet ti (that 
is, I(ti)) is calculated based on the proportion of its length to the 
maximum possible tweet length 
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3. Posting Time of a Tweet 

The posting time of a tweet is the time given at its creation. 
There are different retweet patterns depending on whether it is 
created during the day or during the night. According to [16], a 
tweet has a high possibility of propagating if created between  
8 a.m. and 11 p.m.—when most users are active. Tweets 
created at other times, however, have a low possibility of 
propagating. We assume that the propagation patterns of tweets 



ETRI Journal, Volume 36, Number 3, June 2014 Yongjin Bae et al.   421 
http://dx.doi.org/10.4218/etrij.14.0113.0657 

will be similar if they are written at a similar time.  

4. Local Features 

The local features consist of two components: one is the 
duration of the retweet interval (TRI) and the other is the 
retweet times of the time interval (RTI). In the following 
description, we use these abbreviations for convenience. 

A. TRI 

When a tweet is retweeted n times, we equally divide n  
into k (retweet-time) units. TRI indicates the time from the 
posting time of the first tweet in unit k to the posting time of the 
last retweet in unit k. We define the posting time of tweet ti as  
Time(ti), and trir can be computed using the following formula: 

 1 .
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      (4) 

We convert TRI(ti) into a numeric vector as follows: 

0 1 2 1( ) , ,..., , .i k ktri tri tri trTRI t i     

B. Retweet Times of RTI 

When the lifespan of a tweet is maintained for more than j 
minutes, we equally divide j into p time units. RTI indicates the 
number of retweets occurring in a given time unit p. We can 
convert RTI(ti) into a numeric vector as follows: 

1 2 3( ) , , ,..., .i nRTI t RC RC RC RC    

V. Framework for Predicting Tweet Popularity 

We propose a framework for predicting the popularity of a 
tweet. As shown in Fig. 3, the framework is partitioned into 
two phases. In the generation phase of the prediction 
 

knowledge bases, using the Hadoop cluster, we first remove 
the tweets posted by a spammer and make a retweet graph. We 
then extract the features that are used to make predictions from 
the retweet graph, and based on the tweet creation time we 
generate knowledge bases. In the prediction of the tweet 
popularity phase, a given target tweet is entered into the 
knowledge base. N tweets—each having a similar topic with 
the target tweet—are then extracted. From the knowledge base, 
only M tweets among N—that have an analogous retweet 
pattern—are passed on to the next processing stage. We extract 
T tweets with a similar property to that of the target tweet. 
Finally, we predict the popularity of tweets based on the 
knowledge extracted from T tweets. 

1. Prediction Knowledge Base Algorithm 

We extract the features described in section IV from previous 
popular tweets. Algorithm 1 shows the generative processes of 
the prediction knowledge bases.  

 

Algorithm 1 Generating prediction knowledge bases 

Input 

   S: a set of seed tweets 

   SL: spammer list 

   TWEET: tweet collection 

Output 

   KBi: knowledge bases 

1: T = MapReduce(TWEET, SL)  

2: for seedt in S 

3:    enQueue(tweet_id of seedt) 

4:    while queue_size > 0 do 

5:       tweet_id = deQueue() 

6:       for rtgi in T 

7:          if tweet_id = name of rtgi then 
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Fig. 3. Framework for predicting tweet popularity. 
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8:             addGraph(seedt, rtgi) 

9:             enQueue(each tweet_id of rtgi) 

10:          end if 

11:       end for 

12:    end while 

13:   featurei = extractFeature(seedt) 

14:    store(featurei, KBi) 

15: end for 

 
A. Data collection 

Only tweets written in Korean were included in this study, 
since the posting time changes depending on the time zone of 
users. We collected the tweets using a Twitter Stream API that 
allows the tweets to be searched based on keywords or strings.  

B. Data Preprocessing  

This step is the stage of preprocessing the collected tweets, 
which corresponds to line 1 in Algorithm 1. A tweet provides 
abundant metadata describing its own status. According to the 
type of tweet, examples of simple metadata are shown in  
Figs. 4 and 5. Figure 4 shows the status when a seed tweet is 
posted. In this example, the tweet has metadata that includes 
the identity (id) of both the tweet and the user. 

Figure 5 shows the status when a follower retweets the seed 
tweet. In this example, the tweet includes not only its id and the 
id of the follower, but also the id of the seed tweet and id of the 
user who posted the seed tweet. 

If several users retweet the same tweet, they share the same 
seed-tweet id. We therefore regarded tweets that share the same 
seed-tweet id as one group and assigned a name according to 
this id. In Algorithm 1, rtgi belongs to one such group. 

MapReduce algorithm is suitable for processing the retweet 
data, as shown in Fig. 5. Algorithm 2 is designed to filter 
spammers and collect retweet data. After the end of the map 
function, the reduce function in Algorithm 3 receives pairs of 
<key, List<value>> values. Key corresponds to an id of a user 
who posts the seed tweet, and List<value> corresponds to a 

 

Algorithm 2 Map function for preprocessing 

1: global var spammer_list  allocate() 

2: map(LongWritable key,/*default */, Text tweet/*Collection of 
Tweets*/) 

3:   if(spammer_list_contains(user id of tweet)) 

4:      continue 

5:   if(is retweets (tweet)) 
6:      continue 
7:   write(id of user who posts seed tweet, id of tweet)  
8: spammer_list  free() 

 

Fig. 4. Example metadata of tweet. 

{ 
  “id” : 386926275769544704 
  “text” : “131004 Pusan International Film Festival” 
  “user” : { 

“id” : 1574482472 
} 

} 

 

 

 

Fig. 5. Example metadata of retweeted tweet. 

{ 
  “id” : 286943947328593920 
  “text” : “RT @XXXXX 131004 Pusan International Film Festival” 
  “user” : { 

 “id” : 103268882 
} 

  “retweeted_status” : { 
“id” : 386926275769544704 
“text” : “131004 Pusan International Film Festival” 
“user” : { 

“id” : 1574482472 
} 

} 
} 

 
 

Algorithm 3 Reduce function for preprocessing 

1: reduce(id of seed tweed, List<id of tweet> list)  /*<key, 
List<value> >*/ 

2:   for id of tweet in list   

3:      write(id of seed tweet, id of tweet) 
4:   end for 

 
group of users that share the id of the seed tweet. The reduce 
function is used to provide results in the preprocessing step. 
The output of the reduce function is a set of tweet-id groups 
that exclude tweets written by spammers.  

C. Creating Retweet Graphs 

Lines 4 through 12 in Algorithm 1 show the steps for 
creating retweet graphs. We create retweet graphs using seed 
tweets—classified as popular tweets—and a set of groups 
MapReduce. For the first step, we try to detect whether a set of 
groups include the id of the seed tweet. If the same id is found, 
we generate a retweet graph by adding a group to the seed 
tweet. In the second step, since a graph can have a sub-graph, 
we try to detect other groups by comparing each tweet id of the 
graph generated in the first step with the names of the groups in 
the set.  

D. Extracting Features 

We extract the social features, content features, posting-time 
features, and local features in line 13 of Algorithm 1. We 
extract the TRI and RTI from the retweet graphs and social 
features, content features, and posting-time features from the 
seed tweet—some of which are used for extracting other  
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Fig. 6. Traffic distribution in Twitter. 
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features such as informativeness of a tweet and reliability or 
activity of authors. 

E. Constructing Prediction Knowledge Bases 

We store the extracted features in two knowledge bases, as 
considered in section IV. 3, which corresponds to line 14 in 
Algorithm 1. We analyzed the amount of traffic being driven 
by Twitter to divide our data into two parts: one is in user-
active time and the other is in user-inactive time. Figure 6 
shows that traffic in Twitter varies depending on the time.  

As a result, we determined that user-active time is from   
12 p.m. to 2 a.m. and user-inactive time is otherwise. In 
predicting the popularity of a tweet, we select the prediction 
knowledge base based on when the tweet was created. 

2. Predicting the Popularity of a Tweet 

When the target tweet is entered, we extract tweets with 
similar topics, retweet patterns, and properties sequentially 

 

Algorithm 4 Predicting tweet popularity 

Input 

   eti: target tweet 

   KBi: prediction knowledge bases 

   , ,   : the number of knowledge extracted at each step 

Output 

   Popularity(lifespan, retweet times) 

 1: KBi = selectKnowledgeBase(eti) 

 2: TSi = topicSimilarity(eti, KBi, ) 

 3: GSi = RetweetPatternSimilarity(eti, TSi, β) 
 4: USi = PropertiesSimilarity(eti, GSi, )  

 5: Let estimated popularity = 0  

 6: while 0   do 

 7:   estimated popularity+ = REALPOPULARITY( , )iUS   

 8:   1    

 9: end while  

10: Popularity = estimated popularity /  

from the prediction knowledge bases. Algorithm 4 shows this 
prediction process. 

A. Extracting Tweets of Similar Topics 

When the target tweet is given, we select the prediction 
knowledge base based on the posting time and extract the top  
tweets that have a similar topic to the target tweet. This 
corresponds to lines 1 and 2 in Algorithm 4. We then measure  
the topic similarity, a function of the Jaccard similarity of a text 
bigram. 

B. Extracting Tweets with Similar Retweet Patterns 

This step corresponds to line 3 in Algorithm 4. We extract the 
top β tweets that have similar retweet patterns to the target 
tweet. The retweet patterns are the RTI and TRI. In this paper, 
we set parameters n = 100 and k = 5 in extracting TRI(ti) and 
parameters j = 60 and p = 6 in extracting RTI(ti). We measure 
the similarity between the target tweet eti and the extracted top 
 tweets hti, using the Euclidian distance. 

C. Extracting Tweets with Similar Properties 

In this stage, we extract the top γ tweets with similar 
properties from the top β tweets, considering reliability, activity, 
and informativeness, in line 4 of Algorithm 4. We define R(eti), 
A(eti), and I(eti) as the reliability, activity, and informativeness 
of the target tweet, and R(hti), A(hti), and I(hti) as the reliability, 
activity, and informativeness of the extracted top β tweets, 
respectively. 

2 2 2

( , )

[ ( ) ( )] [( ( )) ( )] [( ( )) ( )( ) ]

i i

i i i i i i

DIST et ht

R et R ht A et A ht I et I ht     

 (5) 

D. Predicting the Popularity of Tweets 

This stage predicts the lifespan and retweet times of the 
target tweet, corresponding to lines 6 through 10 in  
Algorithm 4. We acquire a set of tweets 

0 1{ , , , },iKB ht ht ht   which are the most similar with the 
target tweet in that they satisfy the topic, retweet pattern, and 
properties of the target tweet. Finally, we predict the lifespan 
and retweet times of the target tweet eti by 

1

( ) (1/ )* ( ).i i
i

Popularity et Popularity ht





        (6) 

VI. Experiment 

1. Data Analysis 

To evaluate our approach, we conducted data collection from  
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Fig. 7. Retweet distribution. 
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Fig. 8. Lifespan of a tweet distribution. 
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Twitter between June 2012 and October 2012. The dataset 
contains 473 million postings generated by about 3.7 million 
users. Figure 7 shows the distribution of retweets. 

In Fig. 6, the ratio of tweets retweeted more than 100 times is 
very small, at about 1% (50,717 tweets), compared to the total 
number of tweets. In terms of the number of retweets, we 
assume tweets that are retweeted more than 100 times were 
popular tweets in the past. In addition, we analyze the lifespan 
of tweets that were retweeted more than 100 times, as shown in 
Fig. 8. Although the tweets show various lifespan distributions, 
the number of tweets after ten days is lower. Figure 8 shows 
that the number of tweets within a ten-day period accounts for 
70% (34,862 tweets). We use only tweets that were created 
within the first ten days, since the number of tweets after this 
point is not enough to be used as a prediction knowledge base, 
and it can be assumed that they were retweeted accidentally. 
Throughout our analysis, we define popular tweets as those 
having been retweeted more than 100 times and having a 
lifespan within the ten-day period. 

2. Experimental Data 

We divided our five-month dataset into training data 

Table 2. Experimental data for predicting lifespan. 

Duration of a tweet’s 
lifespan (hours) 

Number of graphs used in 
prediction knowledge base 

Number of graphs 
used in test data 

0 – 24 8,697 2,394 

24 – 48 5,638 1,783 

48 – 72 3,071 1,352 

72 – 96 2,189 779 

96 – 120 1,709 572 

120 – 144 1,470 455 

144 – 168 1,314 384 

168 – 192 1,049 330 

192 – 216 741 204 

216 – 240 580 151 

 

Table 3. Experimental data for predicting retweet times. 

Number of graphs used in  
prediction knowledge base 

Number of graphs used in test data

26,458 8,404 

 

 
generated from June 2012 to September 2012 and the test data 
generated in October 2012. 

Table 2 shows the dataset used for predicting the lifespan of a 
tweet. The authors in [2] suggested using a limited duration of 
0 hours to 72 hours to evaluate the performance. However, 
while we used the range of prediction suggested by [2] we also 
extended it. Table 3 shows the dataset used in predicting the 
number of retweets. 

3. Comparison of Prediction Models 

We compare our model with other conventional models. 
There has been only one conventional research regarding the 
prediction of a tweet lifespan. Of the algorithms proposed in 
[2], ATR-KNN (K-Nearest Neighbor) outperformed other 
approaches. The ATR represents the same author, similar post 
time, and retweet patterns. However, it was impossible to 
predict the lifespan when there was no historical data at all or 
when less than five postings were written by the same author. 
We approached the following problems that may occur in the 
previous model [2]. For instance, when an author has posted 
only three tweets in the past, we extracted two similar tweets 
from other authors by simply considering the retweet patterns 
and posting time. Regarding the prediction of the number of 
retweets, we compared the classification based on user 
preference, which outperformed the various approaches 
proposed in [4]. The interestingness scores of all candidate 
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users were trained by extracting the retweet information that 
represents the relation between an author who posts the seed 
tweet and the follower who posts it in a specific category. The 
interestingness score indicates how likely it is that a user will 
retweet the seed tweet in a specific category. The number of 
retweets can be calculated by adding candidate users that are 
over a certain preference threshold. However, because the 
training set did not contain all user preferences, it may be 
impossible to measure some user preferences in the test data. 
Therefore, we considered only candidate users whose 
preference information was included in the training data. In [7], 
tweets were classified into several categories depending on the 
event, and they selected the top N tweets from each category 
that were retweeted the most. They inferred the target tweet’s 
number of retweets by measuring the curve similarity that 
relies on the ratio between the target tweet and the top N tweets 
in each time unit. 

4. Evaluation Metrics 

In this research, we used different evaluation methods 
according to the prediction condition. In predicting the lifespan 
of the tweets, we use the root-mean-square error (RMSE) to 
obtain the time tolerance between the actual observed lifespan 
and the estimated lifespan. In (7), N represents the amount of 
test data, Lifespanr(ti) represents the actual observed lifespan of 
tweet ti, and Lifespanp(ti) represents estimated lifespan. RMSE 
is calculated by 

2

1

1/ * [ ( ) ( )] .
N

r i p i
i

RMSE N Lifespan t Lifespan t


    (7) 

Instead of directly predicting the exact number of retweets, 
we evaluated the accuracy of the prediction. The prediction 
tolerance of tweet ti, PredictionError(ti), is the ratio of the 
actual observed number of retweets, RetweetTimesr(ti), to the 
estimated retweet times, RetweetTimesp(ti), as shown in the 
following formula: 

( )

| ( ) ( ) .|/ ( )
i

r i p i r i

PredictionError t

RetweetTimes t RetweetTimes t RetweetTimes t 

 (8) 
If the PredictionError(ti) is less than the error threshold, we 

can say that ti is correctly predicted. We set up the various 
ranges of error threshold, ranging from 5% to 30%. In other 
words, the error threshold is the level of difficulty. The 
precision is the ratio of the number of tweets whose  
PredictionError(ti) is less than the error threshold to the total 
number of tweets, as shown in the following formula: 

       
.

   

thenumber of tweets less thanerror threshold
Precision

total number of tweets


 

(9) 

5. Feature Analysis 

We analyzed the features for measuring their usefulness. 
First, we evaluated the performance of each feature in the 
prediction tasks. We also calculated how combining features 
impact the performance. Figures 9 and 10 show the analysis 
results. Figures 9(a) and 10(a) are the results of predicting the 
popularity of a tweet using a single feature. Both results 
indicate that RTI and TRI are useful features related to retweet 
patterns. Informativeness of the tweet shows the lowest value 
in predicting the lifespan of a tweet. Considering the limited 
number of characters of a tweet, we found that it is difficult to 
predict the popularity of a tweet with only its informativeness. 
Figures 9(b) and 10(b) show the results of predicting the 
popularity of a tweet using a group of features. The group of 
features is woven from a similar disposition. The retweet 
patterns consist of RTI and TRI. The properties pattern consists 
of user reliability, user activity, and informativeness of a tweet. 
Both results indicate that the retweet patterns outperform the 
other group of features. In addition, we found that combining 
features shows a higher performance than using only single  

 

Fig. 9. Analyzing features for predicting lifespan of a tweet: (a) single feature, (b) group of features, and (c) combining groups of 
features. 
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Fig. 10. Analyzing features for predicting the number of retweets: (a) single feature, (b) group of features, and (c) combining groups of 
features. 
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features. Based on the results of the feature analysis shown in 
Figs. 9(b) and 10(b), we combined each group to find the 
optimum combination of features. Figures 9(c) and 10(c) show 
the results of predicting the popularity of a tweet using groups 
of features. Both results show that the combination consisting 
of tweet topic, retweet patterns, and property patterns 
outperformed other combinations. 

6. Experimental Results 

We carried out the experiment based on various prediction 
ranges. Table 4 shows that about six hours of tolerance exists 
within a prediction range of 24 hours and that about 54 hours 
of tolerance exists within a prediction range of 240 hours. 
Because the previous model limits the prediction range to 72 
hours, we evaluated the limited range to construct a similar 
experiment environment. In addition, we extended the 
prediction range to evaluate whether it works well under 
flexible conditions.  

Table 5 shows the comparison of the two models within a 
period of 72 hours. The proposed model results in an 
outstanding accuracy compared with the previous model [2], 
having a tolerance of about 18 hours. In the previous model [2], 
the author’s historic posting is the most significant feature for 
predicting the lifespan of a tweet. In other words, the tolerance 
increases when not enough historic postings are written by the 
same author. The performance results in extending the 
prediction range are shown in Fig. 11. The performance is 
similar to within three days. The immense prediction 
knowledge base of the first three days can be useful for the 
model in [2]. However, as the prediction range widens, the 
performance difference becomes increasingly larger. 

The precision in predicting the number of retweets was 
evaluated according to the respective error threshold. Because 
using only 33 test data in the previous models [4] and [7] 
caused low reliability, we evaluated the test data shown in  

Table 4. Time tolerance within prediction range. 

Prediction range (hours) Time tolerance (hours) 

0 – 24 6.16 

0 – 48 11.43 

0 – 72 18.32 

0 – 96 23.73 

0 – 120 29.27 

0 – 144 35.22 

0 – 168 41.23 

0 – 192 46.85 

0 – 216 50.76 

0 – 240 54.87 

 

Table 5. Comparison of model performance within a range of 72 hours.

Algorithm Time tolerance (hours) 

ATR-KNN (Kong 12) 22.24 

Proposed method 18.32 

 

 
Table 3 to enhance the reliability. Figure 12 shows the results of 
the experiment. When we set the error threshold to about 20%, 
the proposed model achieved a significantly outstanding 
precision at about 0.5, in contrast to conventional models, 
which showed a precision of around 0.3 and 0.2, respectively. 
In [7], despite excluding 4,790 unpredictable datasets from all 
8,944 test datasets, it shows the lowest performance among 
them. We concluded that the user-preference property is 
changeable as time passes and is not handled flexibly when 
new users are detected. 

In [4], the model is similar to the proposed model, wherein it 
is based on similar historic tweets. However, it relies 
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Fig. 11. Comparison of model performance according to time range.
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Fig. 12. Comparison of model performance according to error
threshold. 
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significantly on the original number of retweets of the training 
dataset, and the results can therefore be variable. 

VII. Conclusion 

In this paper, we propose an algorithm to predict the lifespan 
of a tweet and the number of retweets, which are a proxy for 
measuring its popularity. To achieve this, we suggest a 
prediction framework of tweet popularity consisting of two 
phases: one is generating prediction knowledge bases, and the 
other is predicting the tweet’s popularity. In the phase of 
generating prediction knowledge bases, we analyzed the 
features that affect a retweet to construct the prediction 
knowledge bases. In the phase of predicting the tweet’s 

popularity, we extract historical tweets that have similar 
properties to those of the target tweet in a step-by-step manner. 

As shown in the experimental results, our model can perform 
better than previous prediction models, for the following 
reasons. First, there are few constraints on the target for 
prediction. A previous model predicted the popularity of a 
tweet based on either user preferences or the historical tweets 
posted by the same author. As a constraint of the conventional 
model, the prediction is possible, if and only if, there is 
sufficient information; this can lead to difficulty in predicting 
the popularity. However, the proposed model does not have the 
above problems, because it is based on similarity with the 
target tweet. Second, our model has excellent scalability. In 
reality, the lifespan of a tweet is wide ranging; and to use 
conventional methods of prediction, historical tweets written 
by the author of the targeted tweet must consist of various 
distributions. In other words, sufficient historical data for each 
prediction range is required. However, our approach deals well 
with the above constraint as it considers collaborative features. 
In addition, this method has an advantage of extracting more 
similar historical tweets. 
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