• 제목/요약/키워드: Poorly Water-Soluble

검색결과 88건 처리시간 0.027초

Preparation and Characterization of Solid Dispersions of Itraconazole by using Aerosol Solvent Extraction System for Improvement in Drug Solubility and Bioavailability

  • Lee, Si-Beum;Nam, Kyung-Wan;Kim, Min-Soo;Jun, Seoung-Wook;Park, Jeong-Sook;Woo, Jong-Soo;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • 제28권7호
    • /
    • pp.866-874
    • /
    • 2005
  • The objective of this study was to elucidate the feasibility to improve the solubility and bioavailability of poorly water-soluble itraconazole via solid dispersions by using supercritical fluid (SCF). Solid dispersions of itraconazole with hydrophilic polymer, HPMC 2910, were prepared by the aerosol solvent extraction system (ASES) under different process conditions of temperature/pressure. The particle size of solid dispersions ranged from 100 to 500 nm. The equilibrium solubility increased with decrease (15 to 10 MPa) in pressure and increase (40 to $60^{\circ}C$) in temperature. The solid dispersions prepared at $60^{\circ}C$/15 MPa showed a slight increase in equilibrium solubility (approximately 27-fold increase) when compared to pure itraconazole, while those prepared at $60^{\circ}C$/10MPa showed approximately 610-fold increase and no endothermic peaks corresponding to pure itraconazole were observed, indicating that itraconazole might be molecularly dispersed in HPMC 2910 in the amorphous form. The amorphous state of itraconazole was confirmed by DSC/XRD data. The pharmacokinetic parameters of the ASES-processed solid dispersions, such as $T_{max},\;C_{max},\;and\;AUC_{0-24h}$ were almost similar to $Sporanox_{\circledR}$ capsule which shows high bioavailability. Hence, it was concluded that the ASES process could be a promising technique to reduce particle size and/or prepare amorphous solid dispersion of drugs in order to improve the solubility and bioavailability of poorly water-soluble drugs.

SMEDDS를 이용한 난용성 약물의 용출율 향상 (Improvement of Dissolution Rate of Poorly Water Soluble Drug Using Self-microemulsifying Drug Delivery System)

  • 김계현;이윤석;배준호;지상철;박은석
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권1호
    • /
    • pp.37-45
    • /
    • 1999
  • ABSTRACT-A self-microemulsifying drug delivery system (SMEDDS) was developed to enhance the solubility and dissolution rate of poorly water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The system was optimized by evaluating the solubility of DDB and the microemulsion existence range after the preparation of microemulsions with varying compositions of triacetin and surfactant-cosurfactant mixtures (Labrasol as surfactant (S) and the combination of Transcutol, Cremophor RH 40 and Plurol oleique as cosurfactant (CoS)). SMEDDS in this study markedly improved the solubility of DDB in water up to 10 mg/ml and the size of the o/w microemulsion droplets measured by dynamic light scattering showed a narrow monodisperse size distribution with an average diameter less than 50 nm. The microemulsion existing range is increased proportional to the ratio of S/CoS, however, it decreased remarkably as the oil content was more than 20%. In vitro dissolution study of SMEDDS showed a significantly increased dissolution rate of DDB in water (> 12 fold over DDB powder), and SMEDDS also had significantly greater permeability of DDB in Caco-2 cell compared to powders.

  • PDF

Improved Dissolution of Poorly Water Soluble TD49, a Novel Algicidal Agent, via the Preparation of Solid Dispersion

  • Lee, Hyoung-Kyu;Cho, Hoon;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권3호
    • /
    • pp.181-185
    • /
    • 2010
  • The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.

A Strategy of Improved Formulation Development in Pharmaceutical Industry

  • Shin, Hee-Jong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.44-46
    • /
    • 2003
  • Although Cyclosporin A (CsA) is a powerful immunosuppresant with little adverse effect on the bone marrow, CsA administered orally in the general formulation cannot obtain high bioavailability due to its poor aqueous solubility. To improve the solubility and enhance the bioavailability of poorly water-soluble CsA, many different approaches have been made in our laboratory. (omitted)

  • PDF

플라스돈 S-630과 함께 분무건조된 모델 난용성 약물로서 프란루카스트의 pH 용해도 특성 및 용출률 개선 (pH Solubility Properties and Improved Dissolution of Pranlukast as an Poorly Water-soluble Model Drug Prepared by Spray-drying with Plasdone S-630)

  • 조원형;이영현;송병주;유석철;임동균;강길선
    • 폴리머
    • /
    • 제35권4호
    • /
    • pp.277-283
    • /
    • 2011
  • 고체분산체는 난용성 약물의 용출률 개선을 위한 방법으로 주로 사용된다. 난용성 약물인 프란루카스트를 플라스돈 S-630과 함께 분무건조하여 고체분산체를 제조하였다. pH에 따른 프란루카스트 용해도 실험을 실시하여 높은 pH에서 약물의 용해도가 높게 나왔다. 입도 분석으로 고체분산체 내의 약물의 크기가 나노 크기로 작아진 것을 확인하였다. 표면전위를 측정하여 고체분산체가 음전하를 가지고 있는 것을 확인하였다. 주사전자현미경으로 고체분산체의 표면이 구형임을 확인하였고, 시차주사열량계와 X-선 회절 분석법을 통해 고체분산체가 무정형임을 확인하였다. 고체분산체의 용출특성을 알아보기 위해 인공장액(pH 6.8)에서 용출거동을 확인하였고, 대조실험을 위해 시판제인 오논$^{(R)}$캡슐을 사용하였다. 이 결과로 분무건조를 통한 고체분산제의 제조를 통해 난용성 약물의 용출특성을 확인하였고, 경구용 약제학적 형태를 가질 수 있는 것을 확인하였다.

Enhancement of Solubility and Disolution Rate of Poorly Water-soluble Naproxen by Coplexation with $2-Hyldroxypropylo-{\beta}-cyclodextrin$

  • Lee, Beom-Jin;Lee, Jeong-Ran
    • Archives of Pharmacal Research
    • /
    • 제18권1호
    • /
    • pp.22-26
    • /
    • 1995
  • The solubility and dissolution rate of naproxen (NPX) complexed with 2-hydroxypropyl-.betha.-cyc-lodextrin (2-HP.betha.CD) using coprecipitation, evaporation, freeze-drying and kneading method were investigated. Solubility of NPX linearly increased (correlation cefficient, 0.995) as $2-HP\betaCD$ concentraction increased, resutling in $A_l$ type phase solubility curve. Inclusion complexes prepared by four different methods were compared by different methods were compared by dfferential scanning calorimetry(DSC). The NPX showed sharp endothemic peak around $156^{\circ}C$ but inclusion complexes by evaporation, freeze-drying and kneading method showed very broad peak without distinct phase transtion temperature. In contrast, inclusion complex prepared by coprecipitation method resulted in detectable peak around $156^{\circ}C$ which is similar to NPX, suggesting incoplete formation of indusion co plex. Dissolution rate of inclusion complexes prepared by evaporation, frezz-drying and kneding except coprecipitation method was largely enhanced in the simultaed gastric and intestinal fluid when compared to NPX powder and commercial $NA-XEN^\registered$tablet. However, about 65% of NPX in gstric fluid. in case of inclusion complex prepared by coprecipitation method, formation of inclusion complex appeared to be incoplete, resulting in no marked enhancement of dissolution rate. From these findings, inclusion complexes of poorly water-soluble NPX with $2-HP\betaCD$ were useful to increase soubility and dissolution rate, resting in enhancement of bioavailability and minimization of gastrointestinal toxicity of drug upon oral administration of inclusion complex.

  • PDF

파클리탁셀을 함유한 지질나노입자의 제조와 인공 소화액에서의 안정성 평가 (Preparation of Lipid Nanoparticles Containing Paclitaxel and their in vitro Gastrointestinal Stability)

  • 김은혜;이정은;임덕휘;정석현;성하수;박은석;신병철
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권2호
    • /
    • pp.127-134
    • /
    • 2008
  • Peroral administration is the most convenient one for the administration of pharmaceutically active compounds. Most of poorly water-soluble drugs administered via the oral route, however, remain poorly available due to their precipitation in the gastrointestinal (GI) tract and low permeability through intestinal mucosa. In this study, one of drug delivery carriers, lipid nanoparticles (LNPs) were designed in order to reduce side effects and improve solubility and stability in GI tract of the poorly water soluble drugs. However, plain LNPs are generally unstable in the GI tract and susceptible to the action of acids, bile salts and enzymes. Accordingly, the surface of LNPs was modified with polyethylene glycol (PEG) for the purpose of improving solubility and GI stability of paclitaxel (PTX) in vitro. PEG-modified LNPs containing PTX was prepared by spontaneous emulsification and solvent evaporation (SESE) method and characterized for mean particle diameter, entrapping efficiency, zeta potential value and in vitro GI stability. Mean particle diameter and zeta potential value of PEG-modified LNP containing PTX showed approximately 86.9 nm and -22.9 mV, respectively. PTX entrapping efficiency was about 70.5% determined by UV/VIS spectrophotometer. Futhermore, change of particle diameter of PTX-loaded PEG-LNPs in simulated GI fluids and bile fluid was evaluated as a criteria of GI stability. Particle diameter of PTX-loaded PEG-LNPs were preserved under 200 nm for 6 hrs in simulated GI fluids and bile fluid at $37^{\circ}C$ when DSPE-mPEG2000 was added to formulation of LNPs above 4 mole ratio. As a result, PEG-modified LNPs improved stability of plain LNPs that would aggregate in simulated GI fluids and bile solution. These results indicate that LNPs modified with biocompatible and nontoxic polymer such as PEG might be useful for enhancement of GI stability of poorly water-soluble drugs and they might affect PTX absorption affirmatively in gastrointestinal mucosa.

Dissolution Characteristics of Hydrophobic Drug-Soluble Carrier Coprecipitates(III) -Dissolution Behaviour of Indomethacin from Several Fast Release Solid Dispersions of Indomethacin-

  • 전인구;이민화;김신근
    • Journal of Pharmaceutical Investigation
    • /
    • 제6권3호
    • /
    • pp.58-69
    • /
    • 1976
  • It is well established that dissolution is freruently the rate limiting step in the gastrointestinal absorpton of a drug from a solid dosage from. The relationship between the dissolution rate and absorption is particularly distinct when considering drugs of low solubility. Consequently, numerous attempts have been made to modify the dissolution characteristics of poorly water soluble drugs. Since dissolution rate is directly proportional to surface area, one may increase the rate by decreasing the particle size of the drug. Levy has considered a number of methods by which a drug may be presented to the GI fludids in finely divided from. The direct method is the utilization of microcrystalline or micronized particles. A second method involves the administration of solutions from which, upon dilution with gastric fluids, the dissolved drug will precipitate in the form of very fine particles. A more unique way of obtaining microcrystalline dispersions of a drug has been ercently suggested by Sekiguchi et al. They have first proposed the formation of a eutectic mixture of a poorly water soruble drug with a physiologically inert, easily soluble carrier. When such systems are exposed to water or GI fluids, the soluble carrier will dissolve rapidly and the finely dispersed drug particles will then be released. It has been suggested by Shefter and Higuchi that the formation of crystalline solvate could be a powerful tool in affecting rapid disslution of highly insoluble substances. Goldberg et al. have noted that the formation of solid solution could reduce the particle size to a minimum and increase the dissolution rate as well as the solubility of the durgs. It has also been shown that the rates of solution of drugs were appreciably increased by coprectipitating the drug with soluble polymers. The increase was found to be sensitive to the method of preparation, the molecular weight of polymer and the particular ratio of drugs to polymer. Although several investigations have demontrated that the solubility and/or dissolution rates of drugs can be increased in this manner, little information is available in the literature related to the in vivo absorption pattern of drugs orally administered as PVP coprecipitates. Recently, however, it was demonstrated that both the rate and extent of absorption of the insoluble drug could be markedly enhanced when orally administered to rats in the form of a coprecipitate with PVP. The purpose of the present investigation was to ascertain the general appility of soluble polymer coprectation technique as a method for enhancing the in vitro dissolution rate of hydrophobic indomethacin. To accomplish this aim, the dissolution characteristics of pure indomethacin, indomethcin-polymer physical mixtures and indomethacin-polymer coprecipitates were quantitatively studied by comparing their relative dissolution rates. The solubility and dissolution behavior of these systems were also examined.

  • PDF

Isolation of Caenorhabditis elegans Mutants Defective in Chemotaxis toward cAMP

  • Jeong, Jin-A;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • 제10권4호
    • /
    • pp.237-241
    • /
    • 2006
  • Chemotactic behavior is essential for the survival of animals. However, the mechanism by which animals carry out chemotaxis is poorly understood. To explore the biochemical events underlying chemotaxis, we isolated C. elegans mutants that displayed abnormal chemotactic responses to cAMP, a strong attractant for C. elegans. Based on their responses to other chemoattractants, the mutant animals could be classified into five groups: (1) animals with defective chemotaxis to cAMP only; (2) animals with defective chemotaxis to both cAMP and cGMP; (3) animals with defective chemotaxis to water-soluble attractants; (4) animals with defective chemotaxis to both water-soluble and volatile attractants; and (5) animals with enhanced chemotactic responses. We expect that analyses of these mutants will help understand the molecular mechanisms underlying chemotaxis in C. elegans.