• Title/Summary/Keyword: Polyurethane.

Search Result 1,615, Processing Time 0.022 seconds

A Smart Damper Using Magnetic Friction And Precompressed Rubber Springs (자력 마찰과 기압축 고무 스프링을 이용한 스마트 댐퍼)

  • Choi, Eun Soo;Choi, Gyu Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • This study proposes a new technology for a smart damper with flag-shaped behavior using the combination of magnetic friction and rubber springs. The magnet provides friction and, thus, energy dissipation, and the rubber springs with precompression contribute to present self-centering capacity of the damper. To verify their performance, this study conducts dynamic tests of magnet frictional dampers and precompressed rubber springs. For the purpose, hexahedron Neodymium (NdFeB) magnets and polyurethane rubber cylinders are used. In the dynamic tests, loading frequency varies from 0.1 to 2.0 Hz. The magnets provide almost perfect rectangular behavior in force-deformation curve. The rubber springs are tested without or with precompression. The rubber springs show larger rigid force with increasing precompression. Lastly, this study discusses combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine the magnets and the rubber springs to obtain the flag-shaped behavior.

A Study on the Fluid Interception Valve According to Non Rubbing Top and Bottom operation Shaft (무마찰 상하작동 축에 의한 유체차단 밸브에 관한 연구)

  • Cho, Myung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.27-32
    • /
    • 2005
  • Liquid valve is divided into cylinder and liquid part or composed of a single body structure. It becomes a connected structure to cylinder head after inserting stainless(STS) shaft to Teflon packing. In injecting and intercepting fluid, working efficiency becomes low because of the top and bottom round trip operation the friction between Teflon packing and STS shaft fluid leakage, decline of working environment, and each part replacement. And so target value is unattainable in productivity liquid valve design, quality, and structure change are studied. In this paper, designed to solve the existing problems basically, to prevent friction of Piston by developing diaphragm linked with piston, to satisfy long life, and to provide the prevention of leakage. The objective of the study is also to prevent remains fluid at nozzle tip after dispensing fluid, and bell close with the suction function in piston retreating.

Evaluation of a Method for the Measurement of PAHs in the Ambient Atmosphere - Focusing on High Volume Sampling and GC/MS Analysis (대기 중 다환방향족탄화수소 측정방법의 성능평가 - 하이볼륨 샘플링 및 GC/MS 분석방법을 대상으로)

  • Seo, Young-Kyo;Park, Dae-Kwon;Baek, Sung-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.322-333
    • /
    • 2009
  • In this study, a measurement method was evaluated for the determination of polycyclic aromatic hydrocarbons (PAHs) in the ambient atmosphere. PAHs were sampled by high-volume samplers, and were then analysed with a GC/MS system. Particulate PAHs were collected on $8"{\times}10"$ quartz fiber filter, while vapor phase PAHs were adsorbed on polyurethane foam (PUF). Target compounds included a total of 36 PAHs, which are known to be frequently detected in the urban atmosphere. It was not necessary to clean-up samples before samples were analyzed using GC/MS, and the overall performance of the method was tested by a variety of quality control and quality assurance schemes. It is generally known that the clean-up procedure can negatively affect the recovery of samples. Precision and accuracy was evaluated using SRM provided by US NIST, and the results were generally satisfactory and reliable. However, the GC/MS method appeared not to be adequate for 6-rings PAHs, such as coronene, due to its lower sensitivity. In addition, collection efficiencies for low molecular compounds, such as 2-rings PAHs, were poor because of the lower retention volume of the PUF adsorbent. As a result, it was concluded that the method based on high-volume sampling and GC/MS analysis can give very reliable data by simultaneous sampling of both particulate and vapor phases for 3-rings to 5-rings PAHs of environmental concern.

Characteristics and osteogenic effect of zirconia porous scaffold coated with ${\beta}$-TCP/HA

  • Song, Young-Gyun;Cho, In-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate the properties of a porous zirconia scaffold coated with bioactive materials and compare the in vitro cellular behavior of MC3T3-E1 preosteoblastic cells to titanium and zirconia disks and porous zirconia scaffolds. MATERIALS AND METHODS. Titanium and zirconia disks were prepared. A porous zirconia scaffold was fabricated with an open cell polyurethane disk foam template. The porous zirconia scaffolds were coated with ${\beta}$-TCP, HA and a compound of ${\beta}$-TCP and HA (BCP). The characteristics of the specimens were evaluated using scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), and x-ray diffractometry (XRD). The dissolution tests were analyzed by an inductively coupled plasma spectrometer (ICP). The osteogenic effect of MC3T3-E1 cells was assessed via cell counting and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS. The EDX profiles showed the substrate of zirconia, which was surrounded by the Ca-P layer. In the dissolution test, dissolved $Ca^{2+}$ ions were observed in the following decreasing order; ${\beta}$-TCP > BCP > HA (P<.05). In the cellular experiments, the cell proliferation on titanium disks appeared significantly lower in comparison to the other groups after 5 days (P<.05). The zirconia scaffolds had greater values than the zirconia disks (P<.05). The mRNA level of osteocalcin was highest on the non-coated zirconia scaffolds after 7 days. CONCLUSION. Zirconia had greater osteoblast cell activity than titanium. The interconnecting pores of the zirconia scaffolds showed enhanced proliferation and cell differentiation. The activity of osteoblast was more affected by microstructure than by coating materials.

Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor (FDM 3D프린팅 기반 유연굽힘센서)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing (이종 폴리머재료 어닐링을 이용한 유연저항센서 FDM 3D프린팅 제작실험)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • In this paper, the performances of the electrical characteristics of the Fused Deposition Modeling (FDM) 3D-printed flexible resistance sensor was evaluated. The FDM 3D printing flexible resistive sensor is composed of flexible-material thermoplastic polyurethane and a conductive PLA (carbon black conductive polylactic acid) polymer. While 3D printing, polymer filaments heat up quickly before being extruded and cooled down quickly. Polymers have poor thermal conductivity so the heating and cooling causes unevenness, which then results in internal stress on the printed parts due to the rapidity of the heating and cooling. Electrical resistance measurements show that the 3D-printed flexible sensor is unstable due to internal stress, so the 3D-printed flexible sensor resistance curve does not match the increases and decreases in the displacement curve. Therefore, annealing was performed to eliminate the mismatch between electrical resistance and displacement. Annealing eliminates residual stress on the sensor, so the electrical resistance of the sensor increases and decreases in proportion to displacement. Additionally, the resistance is lowered in comparison to before annealing. The results of this study will be very useful for the fabrication of various devices that employ 3D-printed flexible sensor that have multiple degrees of freedom and are not limited by size and shape.

Synthesis and Analysis of Modified Polyesters Containing Phosphorus and Bromine for Flame-Retardant Coatings (난연도료용 인과 브롬 함유 변성폴리에스터의 합성 및 분석)

  • Park, Hong-Soo;Yoo, Gyu-Yeol;Kim, Ji-Hyun;Yang, In-Mo;Kim, Seung-Jin;Kim, Young-Geun;Jung, Choong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.319-331
    • /
    • 2007
  • The aim of this study is to enhance the flame retardancy by the synergism effect of phosphorus and bromine groups. The flame-retardant polyurethane coatings containing phosphorus and bromine compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis(orthophosphate) (TBOP) and trimethylolpropane/2,3-dibromopropionic acid (2,3-DBP) [2,3-DBP-adduct], the condensation polymerization was performed with four different monomers of two intermediate products, 1,4-butanediol, and adipic acid to obtain four-components copolymer. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,3-DBP that provides bromine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing phosphorus and bromine as DTBA-10C, -20C, -30C. Average molecular weight and polydispersity index of the preparation of DTBAs were decreased with increasing 2,3-DBP content because of increase of hydroxyl group that retards reaction. We found that the thermal stability of the prepared DTBAs increased with bromine content at high temperature.

A Study on the Design of a High-Speed Heddle Frame (고속 직기용 복합재료 헤들 프레임의 설계에 관한 연구)

  • Lee, Chang-Seop;O, Je-Hun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.250-263
    • /
    • 2001
  • The up and down speed of heddle frames that produce woven cloth by insertion of weft yarns between warp yarns has been increased recently much for productivity improvement, which induces higher inertial stresses and vibrations in the heddle frame. the heddle frame is required to reduce its mass because the heddle frame contributes the major portion of the stresses in the heddle frames during accelerating and decelerating. Conventional aluminum heddle frames have fatigue life of around 5 months at 550rpm due to their low fatigue flexural strength as well as low bending stiffness. In this work, since carbon/epoxy composite materials have high specific fatigue strength(S/p), high specific modulus(E/p), high damping capacity and sandwich construction results in lower deflections and higher buckling resistance, the sandwich structure composed of carbon/epoxy composite skins and polyurethane foam were employed for the high-speed heddle frame. The design map for the sandwich beams was accomplished to determine the optimum thickness and the stacking sequences for the heddle frames. Also the effects of the number of ribs on the stress of the heddle frame were investigated by FEM analyses. Finally, the high-speed heddle frames were manufactured with sandwich structures and the static and dynamic properties of the aluminum and the composite heddle frames were tested and compared with each other.

Core-Shell Poly(Styrene/Sulfonated N-hydroxy Ethyl Aniline) Latex Particles Prepared by Chemical Oxidative Polymerization in Emulsion Polymerization

  • Shin Jin-Sup;Lee Jung-Min;Suzuki Kiyoshi;Nomura Mamoru;Cheong In-Woo;Kim Jung-Hyun
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.466-472
    • /
    • 2006
  • The kinetic behavior of emulsion polymerizations of styrene in the presence of sulfonated N-hydroxy ethyl aniline (SHEA) was investigated with two initiators: 2,2'-azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). SHEA was synthesized using a stepwise polyurethane reaction method from 3-hydroxy-1-propane sulfonic acid sodium salt, isophorone diisocyanate (IPDI), and N-(2-hydroxyethyl) aniline. Stable core-shell poly(styrene/sulfonated N-hydroxy ethyl aniline, St/SHEA) latex particles were successfully prepared by using an appropriate amount of AIBN, in which SHEA plays the role of 'surfmer', i.e., acting as both a surfactant in the emulsion polymerization and a monomer in the chemical oxidative polymerization. The kinetic behavior was dissimilar to that of typical emulsion polymerization systems. A long inhibition period and low rate of polymerization were observed due to radical loss by the oxidative polymerization of SHEA. It was concluded, due to the low water-solubility of AIBN and retardation reaction by SHEA, that the initial loci of polymerization were monomer droplets. However, growing polymer particles as polymerization loci became predominant as polymerization proceeded. It was suggested that AIBN was more effective than KPS in the preparation of the core-shell type poly(St/SHEA) latex particles. With KPS, no substantial polymerization was observed in any of the samples.

Immobilization of Lactobionic Acid on Polyurethane Films and Their Interaction with Hepatocytes

  • Meng Wan;Jung Kyung-Hye;Kang Inn-Kyu;Kwon Oh Hyeong;Akaike Toshihiro
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.257-264
    • /
    • 2005
  • Polyurethanes containing z-Iysine segments in the main chain (PULL) were synthesized from 4,4'-diphe-nylmethyl diisocyanate, poly(tetramethylene glycol), and z-Iysine oligomer as a chain extender. The PULL film was treated first with a $10\%$ HBr-acetic acid solution and subsequently with a saturated sodium bicarbonate aqueous solution to produce a primary amine group on the surface (PULL-N). Lactobionic acid (LA)-immobilized PULL (PULL-L) was prepared by the coupling reaction of the PULL surface amine groups and the LA carboxylic acid groups. The surface-modified PULLs were then characterized by attenuated total reflection-Fourier transform infra-red spectroscopy, electron spectroscopy for chemical analysis, atomic force microscopy, and contact angle goniometry. In the hepatocytes adhesion experiment, the cells poorly adhered to the PULL surface, although they adhered moderately well to the PULL-N surface. On the other hand, the cells adhered well to the PULL-L surface, suggesting the good affinity of the surface $\beta$-galactose moieties for hepatocytes. When hepatocytes were cultured in the presence of epidermal growth factor for 48 h, the cells rapidly aggregated on the PULL-L surface, whereas they aggregated only slowly on the other surfaces. The PULL prepared in this study has the potential to be used as a coating material for the enhancement of hepatocyte adhesion.