환경 측정,분석,처리기술 분야

한국환경보건학회지, 제35권 제4호(2009) J. Env. Hlth. Sci., Vol. 35, No. 4, pp 322~333(2009)

대기 중 다환방향족탄화수소 측정방법의 성능평가 -하이볼륨 샘플링 및 GC/MS 분석방법을 대상으로

서영교ㆍ박대권ㆍ백성옥†

영남대학교 환경공학과 (2009. 6. 23. 접수/2009. 7. 24. 수정/2009. 8. 13. 채택)

Evaluation of a Method for the Measurement of PAHs in the Ambient Atmosphere –Focusing on High Volume Sampling and GC/MS Analysis

Young-Kyo Seo · Dae-Kwon Park · Sung-Ok Baek[†]

Department of Environmental Engineering, Yeungnam University (Received June 23, 2009/Revised July 24, 2009/Accepted August 13, 2009)

ABSTRACT

In this study, a measurement method was evaluated for the determination of polycyclic aromatic hydrocarbons (PAHs) in the ambient atmosphere. PAHs were sampled by high-volume samplers, and were then analysed with a GC/MS system. Particulate PAHs were collected on 8"×10" quartz fiber filter, while vapor phase PAHs were adsorbed on polyurethane foam (PUF). Target compounds included a total of 36 PAHs, which are known to be frequently detected in the urban atmosphere. It was not necessary to clean-up samples before samples were analyzed using GC/MS, and the overall performance of the method was tested by a variety of quality control and quality assurance schemes. It is generally known that the clean-up procedure can negatively affect the recovery of samples. Precision and accuracy was evaluated using SRM provided by US NIST, and the results were generally satisfactory and reliable. However, the GC/MS method appeared not to be adequate for 6-rings PAHs, such as coronene, due to its lower sensitivity. In addition, collection efficiencies for low molecular compounds, such as 2-rings PAHs, were poor because of the lower retention volume of the PUF adsorbent. As a result, it was concluded that the method based on high-volume sampling and GC/MS analysis can give very reliable data by simultaneous sampling of both particulate and vapor phases for 3-rings to 5-rings PAHs of environmental concern.

Keywords: PAHs, QC/QA, GC/MS, PUF, SRM

I.서 론

환경대기 중에 존재하는 다환방향족탄화수소(Polycyclic Aromatic Hydrocarbons; 이하 PAHs)는 일반적으로 벤 젠고리 2개에서 6개 사이이며, 탄소와 수소결합 구조로 되어 있다. 벤젠고리 3개 이하의 PAHs는 증기상으로 대부분 존재하며, 벤젠고리 5개로 구성된 benzo(a)pyrene 등은 대부분 입자상으로 존재한다.¹¹ PAHs는 산소가 결 핍된 연소과정에서 열분해와 열합성의 두 가지 메커니 즘에 의해 주로 생성된다. PAHs는 산불, 화산폭발 등 과 같은 자연적인 발생뿐만 아니라 주거, 운송업, 산업, 농업 등 인위적인 분야의 연소과정에서 주로 배출된다.^{2,3)} PAHs는 대기 중에 널리 분포되어 있으며 특히 benzo(a)pyrene은 발암성 물질로 밝혀진 최초의 오염물 질이다.⁴ 대체적으로 입자상 PAHs가 증기상 PAHs에 비해 독성이 대체로 높은 것으로 알려져 있다.⁹ 그러나 상대적으로 저분자이면서도 발암성이 높은 PAHs 중 benz(a)anthracene, chrysene과 같은 화합물은 증기-입자 상 상분배가 현저하여 이들 물질들의 대기 중 농도를 평기함에 있어서 입자상 시료와 증기상 시료의 동시채 취는 매우 중요하다.⁹ 또한 증기상 PAHs 농도는 흡착 제의 종류와 충전량에 따라 농도차이를 나타내는데 PAHs 시료채취에 대한 표준화를 시도할 경우 시료채 취유량, 채취시간, 흡착제 종류, 충전량 등의 영향인자

^{*}Corresponding author : Department of Environmental Engineering, Yeungnam University Tel: 82-53-810-2544, Fax: 82-53-810-4624 E-mail : sobaek@yu.ac.kr

를 신중히 검토해야 한다."

과거 HPLC를 이용한 PAHs 분석에서는 UV검출기와 형광검출기의 특성상 동일파장에 감응하는 방해물질의 간섭을 최대한 배제하기 위해, 궁극적으로 정확한 정성 정량을 위해 정제(clean-up) 과정을 반드시 필요로 하였 다. HPLC 분석을 위해서는 시료 중의 비극성추출용매 (핵산 등)를 거의 건조시킨 후 최종용매를 극성용매(아 세토나이트릴 등)로 치환하는 과정이 요구되었다. 이러 한 정제과정과 용매치환과정은 절차가 번거로울 뿐만 아니라 저분자 PAHs의 경우 일부 손실이 야기되었다.⁸⁾ 그러나 최근 미국 환경보호국(Environmental Protection Agency; 이하 EPA) 독성유기물 측정방법(Method TO-13A)의 PAHs를 GC/MS로 분석하는 측정방법에서는 PAHs 시료 전처리 시 상대적으로 깨끗한 시료의 경우 정제과정의 생략 가능함을 나타내고 있다.⁹⁾

PAHs 분석과 같이 시료채취과정과 전처리과정이 복 잡한 측정항목의 경우 측정결과의 신뢰성 차원에서 양 질의 정도관리(Quality Management, 이하 QC/QA) 결 과가 요구된다. 정도관리(QC/QA)란 정도제어(Quality Control, QC)와 정도보증(Quality Assurance, QA)으로 나뉜다. 정도제어(QC)는 측정의 재현성을 나타내는 정 밀도(precision)와 감도(sensitivity)로 나타낼 수 있으며, 정도보증(QA)은 참값에 접근하는 정도를 나타내는 정 확도로 구분하여 평가할 수 있다. 환경자료의 정도관리 (QC/QA)에 대한 정보는 실험실간 측정분석 결과의 상 이함에 대한 소모적인 시비를 방지할 뿐만 아니라, 측 정분석 자료에 대한 신뢰성을 평가할 수 있는 잣대로 활용하는 것이 가능하다.¹⁰ 최근의 대기 중 PAHs 연구 에서는 대체로 만족할 만한 수준의 정도관리(QC/QA) 결과를 제시하고 있다.^{8,11-14)}

환경대기중의 PAHs와 같이 미량수준으로 존재하는 유기물의 경우 분석검출한계 문제를 극복하고 신뢰성 있는 측정결과를 얻기 위하여 가급적 많은 양의 시료 를 채취하여야 할 필요가 있다. 또한 대기 중 중금속, 황산염, 질산염과 같은 무기물질과 프탈레이트 등과 같 은 유기물질을 동시에 채취하여 분석하여야 할 경우 하 이볼륨 시료채취 방법은 현실적으로 매우 유용한 대안 이 될 수 있다. 그러나 하이볼륨 시료채취의 경우 증기 상으로 존재하는 유기물질을 동시에 채취하기 위해서 는 압력손실이 많이 유발되는 XAD-2와 같은 분말흡착 제는 사용할 수 없는 단점이 있으며 불가피하게 압력 손실이 적게 유발되는 PUF와 같은 다공성 흡착제를 사 용하지 않을 수 없는 한계점이 있다.⁷⁾ 따라서 본 연구 에서는 석영섬유필터와 PUF를 장착한 하이볼륨 PUF 샘플러를 이용하여 대기 중 ng/m³ 수준의 저농도 PAHs의 입자상과 증기상을 동시채취한 후 GC/MS로 분석하는 방법에 대한 성능을 평가하고 현실적으로 발 생할 수 있는 문제점을 고찰하였다. 분석대상 PAHs는 미국 EPA TO-13A 방법에서 지정한 19개 물질 및 일 반적인 도시대기 중에서 빈번히 검출되는 물질을 포함 한 총 36개 물질을 선정하였다. 특히 환경대기 중 PAHs 시료를 정제과정없이 농축만을 수행하여 GC/MS 로 분석한 결과에 대해 다양한 정도관리(QC/QA)를 통 하여 측정불확도를 평가하였으며, 5대의 동일한 샘플러 를 이용하여 현장시료를 대상으로 시료채취과정을 포 함하는 전반적인 측정 재현성을 평가하였다.

II. 연구방법

1. PAHs 시료채취 및 추출과정

본 연구에서는 입자상 PAHs를 채취하기 위해 8"×10" 석영섬유필터(QMA, Whatman, England)를, 증기상 PAHs를 채취하기 위해 직경 3"×길이 3" polyurethane foam(이하 PUF, Tisch Environmental Inc., USA)을 각각 사용하였다. 필터는 시료채취 전에 유기성 불순물을 제거하기 위하여 400°C에서 5시간 열 처리하여 휘발분을 제거하였다. PUF는 acetone 70% + methanol 30%를 혼합한 용액을 soxhlet 추출장치에서 시간당 4회 이상의 순환율로 24시간 불순물을 제거하 였다. 한편 본 연구에서는 시료채취 전 추출용매로 세 척한 필터 3개와 PUF 3개를 시료와 동일하게 취급하 여 추출 및 분석한 결과 모든 PAHs 대상물질이 검출 한계 이하로 나타났다. 시료채취는 하이볼륨 PUF 샘플 러(Tisch Environmental Inc., USA)를 사용하였다. 공 기시료는 550 l/min의 유량으로 24시간 연속 가동하여 약 800 m³를 채취하였다. 시료가 채취된 필터와 PUF

Filter (Sampled particulate PAHs)	PUF (Sampled vapor PAHs)
+	ŧ
Spiking laboratory surro	gate standards
+	
Sonication (1hr)	+
+	
Soxhlet extraction (6 cycl	e/hr for 16 hrs)
150 mL for filter, 350 mL for PUF (a	acetone 10% + hexane 90%)
+	
Concentrated to 3~4 mL by RapidVap	heating evaporator with N2
+	
Drying (water removal) with anhydro	ous sodium sulfate (1.5 g)
+	
Concentrated down to 0.5	mL or 1.0 mL
+	
Spiking internal s	tandards
+	
Injected 1.0 µL and analysed	by GC/MS (SIM mode)

는 시료 추출 전까지 -18°C의 냉동고에 보관하였다. 필터와 PUF에 채취된 PAHs의 추출과 전처리 과정의 절차는 Fig. 1에 나타내었다.

2. 분석대상 PAHs 및 표준물질

본 연구에서는 미국환경보호국(EPA), 독성물질 및 질 병조사국(Agency for Toxic Substances and Disease

Table 1. Characteristics of 36 PAHs analyzed in this study

Nomenclature	Retention time (min)	Formula	Primary ion	Boiling point (°C)
			124	Boning point (C)
1 Norththelene	8.634	$C_{10}D_8$	130	-
1. Naphinaiene	8.070	$C_{10}H_8$	128	218
2 Dishawi	10.532	$C_{12}D_{10}$	104	-
2. A superhylen s	10.574	$C_{12}H_{10}$	154	200
3. A cenaphtnylene	11.434	$C_{12}H_8$	152	280
18 d10-A cenaphtnene	11.688	$C_{12}D_{10}$	164	2/1~2/9
4. A cenaphthene	11./53	$C_{12}H_{10}$	154	279
5. Fluorene	12.768	$C_{13}H_{10}$	166	298
6. Dibenzothiophene	14.574	$C_{12}H_8S$	184	332~333
SS d10-Phenanthrene	14.799	$C_{14}D_{10}$	188	-
7. Phenanthrene	14.853	$C_{14}H_{10}$	178	340
8. Anthracene	14.968	$C_{14}H_{10}$	178	340
9. 4H-CdefPh	16.212	$C_{15}H_{10}$	190	353
SS d10-Fluoranthene	17.573	$C_{16}D_{10}$	212	384
10. Fluoranthene	17.619	$C_{16}H_{16}$	202	384
IS d10-Pyrene	18.139	$C_{16}D_{10}$	212	=
11. Pyrene	18.185	$C_{16}H_{10}$	202	360-404
12. Benzo[c]phenanthrene	20.547	$C_{18}H_{12}$	228	-
13. Benzo[ghi]fluoranthene	20.617	$C_{18}H_{10}$	226	-
Cyclopenta[cd]pyrene	20.617	$C_{18}H_{10}$	226	-
SS d12-Benz[a]anthracene	21.009	$C_{18}D_{12}$	240	-
15. Benz[a]anthracene	21.065	$C_{18}H_{12}$	228	437.6
16. Triphenylene	21.119	$C_{18}H_{12}$	228	438
17. Chrysene	21.157	$C_{18}H_{12}$	228	448
18. Benzo[b]fluoranthene	23.777	$C_{20}H_{12}$	252	481
19. Benzo[j]fluoranthene	23.777	$C_{20}H_{12}$	252	-
20. Benzo[k]fluoranthene	23.777	$C_{20}H_{12}$	252	480~491
21. Benzo[a]fluoranthene	24.077	$C_{20}H_{12}$	252	-
22. Benzo[e]pyrene	24.619	$C_{20}H_{12}$	252	493
IS d12-Benzo[a]pyrene	24.711	$C_{20}D_{12}$	264	-
23. Benzo[a]pyrene	24.791	$C_{20}H_{12}$	252	495
IS d12-Perylene	24.961	$C_{20}D_{12}$	264	-
24. Perylene	25.047	$C_{20}H_{12}$	252	500~503
25. Dibenz[a,j]anthracene	28.514	$C_{22}H_{14}$	278	-
SS d14-Dibenz[a,h]anthracene	28.930	$C_{22}D_{14}$	292	-
26. Indeno[1,2,3-cd]pyrene	29.050	$C_{22}H_{12}$	276	-
27. Dibenz[a,h]anthracene	29.068	$C_{22}H_{14}$	278	524
28. Dibenz[a,c]anthracene	29.068	$C_{22}H_{14}$	278	518
29. Benzo[b]chrysene	29.543	$C_{22}H_{14}$	278	-
30. Picene	29.710	$C_{22}H_{14}$	278	518~520
IS d12-Benzo[ghi]perylene	30.184	$C_{22}D_{12}$	288	-
31. Benzo[ghi]perylene	30.323	$C_{22}H_{12}$	276	>500
32. Anthanthrene	31.001	$C_{22}H_{12}$	276	-
33. Dibenzo[b,k]fluoranthene	37.214	$C_{24}H_{14}$	302	-
34. Dibenzo[a,h]pyrene	39.875	$C_{24}H_{14}$	302	-
35. Coronene	40.127	$C_{24}H_{12}$	300	525
36. Dibenzo[a,e]pyrene	41.557	$C_{24}H_{14}$	302	-

 $* 4 H \text{-} C def Ph \ : \ 4 H \text{-} Cyclopenta [def] phen anthrene.$

Registry, ATSDR), 세계보건기구(WHO)의 국제암연구 센터(International Agency for Research on Cancer) 등의 기관에서 인체에 변이원성 및 발암을 일으키거나 일으킬 가능성이 크다고 추정되는 벤젠고리 2개 이상 PAHs 중 36개 물질을 측정대상물질로 선정하였다.^{59.15)} 이들 측정대상 PAHs의 종류와 화학적 특성 등을 Table 1에 나타내었다. 본 연구의 분석조건에서 분리되 지 않은 물질들은 하나의 체류시간으로 표시하였다. 1 차 이온은 해당물질의 질량스펙트럼 확인을 통한 정성 과 정량에 사용된 이온을 나타내었으며 내부표준물질 (Internal Standard, IS)과 대리표준물질(Surrogate Standards, SS)은 해당물질명 앞에 각각 IS, SS로 표 시하였다.

PAHs의 정성과 정량에 사용된 표준물질은 미국 표준 기술연구소(National Institute of Standards and Technology, 이하 NIST)에서 제공하는 표준참조물질(Standard Reference Material, 이하 SRM; SRM2260a)을 사용하였다. 표준물질로 SRM을 사용한 이유는 공인된 기관에서 농도가 검증된 물질이라는 점 외에도 표준용 액 앰플 속에 대상물질의 농도가 10μg/ml 이하의 저 농도로 들어 있어서 분석을 위한 희석의 단계를 줄여 주어 궁극적으로 정량오차를 줄일 수 있기 때문이다. SRM 2260a를 정량용 표준물질로 채택한 또 다른 이유 는 상업적으로 판매되는 표준용액의 경우 대부분 모든 물질의 농도가 일정한데 반하여 본 연구에서 사용한 SRM은 대상물질별 농도의 비가 일반 환경대기 중의

Table 2. Operating conditions for PAHs analysis with GC/ MS system

	GC/MS	Agilent Technologies 6890N/5973 inert
Column	Column	DB-5MS
& Corriger	Carrier gas	Helium
Carrier	Carrier flow rate	1.5 m <i>l/</i> min
	Injection volume	1.0~2.0 μl (10.0 μl Syringe)
Injector	Injection mode	Pulsed Splitless mode
5	Injector temp.	300°C
	Initial temp.	70°C (1 min hold)
0	Ramp 1	15°C/min to 205°C (0 min hold)
Oven	Ramp 2	10°C/min to 325°C (20 min hold)
	Total run time	42 min
	Electron energy	70 eV
	Mass range	100~350 amu
Detector	Quad temp.	180°C
	Ion source temp.	300°C
	Transfer line temp.	280°C

Fig. 2. Typical GC/MS chromatograms of PAHs (SIM mode).

Journal of Environmental Health Sciences, Vol. 35(4)

대상물질 간 농도비와 유사함으로 각 대상물질 정량에 적합한 농도로 표준용액을 제조하여 사용할 수 있었다. 본 연구에서는 NIST의 SRM2260a PAHs 혼합용액 이 외에도 개별 물질의 정성 및 확인을 위하여 19개 PAHs에 대한 개별 표준물질(Accustandard, USA)을 구 입하여 필요할 경우 GC 머무름 시간(retention time)과 피크의 정성 목적으로 사용하였다. 한편, 본 연구에서 는 정량용 표준용액인 SRM2260a 이외에 SRM2270을 내부표준물질(internal standards)로 SRM2269를 대리 표준물질(surrogate standards)로 각각 사용하였다. SRM2270에는 d8-Naphthalene, d10-Acenaphthene, d10-Pyrene, d12-Benzo(a)pyrene, d12-Perylene, d12-Benzo(ghi)perylene이 포함되어 있으며, SRM2269에는 d10-Biphenyl, d10-Phenanthrene, d10-Fluoranthene, d12-Benz(a)anthracene, d14-Dibenz(ah)anthracene이 함 유되어 있다.

3. GC/MS 분석

본 연구에서의 PAHs 분석은 GC/MS(Agilent Technologies 6890N/5973 inert)를 이용하여 수행하였다. Table 2에는 본 연구에서 사용한 PAHs 분석조건을 나 타내었다. Fig. 2에는 표준시료를 분석한 GC/MS 크로 마토그램의 일례를 나타내었다. Filter 시료는 PUF 시 료에 비해 상대적으로 고분자 물질이 검출됨을 확인할 수 있다.

III. 결과 및 고찰

본 연구에서는 PAHs 측정방법에 대한 성능을 정도 제어(QC)와 정도확인(QA) 측면으로 구분하여 평가하였다. 정도제어(QC) 측면에서 측정재현성, 검출한계를 평가하였고, 정도보증(QA) 측면에서 PUF 시료채취능,

회수율, 정확성을 평가 및 검토하였다. 여기서 측정재 현성이란 시료채취과정과 분석과정을 포함한 측정과정 전반에 대한 총괄재현성을 의미한다.

현장시료를 대상으로 시료채취 및 분석과정을 포함한 측정재현성 평가

통상적으로 분석재현성은 실험실 내에서 용액상 표 준물질을 반복 분석한 후, 그 상대표준편차를 계산하 여 나타내게 된다. 그러나 동일한 샘플러를 다수로 사 용하여 여러 지점에서 동시에 측정한 결과를 비교할 경우 분석재현성에 부가하여 시료채취과정에서 발생할 수 있는 불확실성을 포함하는 측정재현성(혹은 총괄 재 현성)을 평가하는 것은 매우 중요한 과정이다. 본 연 구에서는 PAHs 시료채취에 사용된 하이볼륨 PUF 샘 플러 간의 성능을 비교하기 위하여 영남대학교 환경공 학과 건물 5층(경상북도 경산시 대동 영남대학교 소재 관) 옥상에서 5대의 동일한 샘플러를 이용해 시료를 채취하였다. 시료채취는 2005년 10월 5일~6일, 10월 6일~7일의 각각 24시간 동안 이루어졌다. 시료채취 후 필터시료를 이용하여 TSP 농도를 측정하였으며, 필터 시료와 PUF 시료를 각각 추출하여 PAHs 성분 분석 을 하였다. TSP 농도 비교결과는 Fig. 3에 나타내었 다. 첫번째 실험의 TSP 농도에 대한 상대표준편차는 6.9%로 나타났으며, 두번째 실험의 TSP 농도에 대한 상대표준편차는 9.4%로 개별 샘플러를 이용한 TSP 농도의 재현성은 모두 10% 이내로 나타나 양호한 것 으로 판단된다.

5대의 동일한 샘플러로 동시에 채취한 시료 중 PAHs 농도(입자상+증기상) 측정에 대한 재현성 결과는 분석 재현성 결과와 함께 Table 3에 나타내었다. Table 3에 는 PAHs 농도에 대한 상대표준편차와 함께 측정된 입 자상 PAHs 농도를 부유먼지 농도로 정규화한 결과에

Fig. 3. Comparison of TSP concentrations from simultaneous sampling using five identical samplers.

	Analytical	precision	Overall precision								
	(n=	11)		Run 1 (n=5)				Run 2 (n=5)			
Compounds	R.F. RSD ^{a)} (%)	R.T. RSD (%)	PAHs (ng/m ³)	RSD (%)	ng PAHs µg TSP	RSD (%)	PAHs (ng/m ³)	RSD (%)	ng PAHs µg TSP	RSD (%)	
Naphthalene	1.5	0.5	1.30	22.1	0.018	20.6	8.51	35.2	0.135	38.1	
Biphenyl	6.6	0.4	0.86	20.4	0.012	21.1	5.50	31.9	0.087	34.6	
A cenaphthy lene	6.0	0.3	0.07	29.2	0.001	28.6	1.21	35.4	0.019	34.8	
Acenaphthene	4.4	0.3	0.03	36.2	0.000	36.8	0.19	30.2	0.003	28.4	
Fluorene	5.5	0.3	0.39	32.8	0.005	32.6	2.53	34.2	0.040	34.3	
Phenanthrene	7.5	0.3	30.40	7.7	0.417	12.3	106.58	41.8	1.702	45.2	
Anthracene	15.8	0.3	3.50	14.2	0.048	16.8	7.10	37.8	0.113	41.1	
4H-CdefPh	1.7	0.3	3.18	11.4	0.044	14.7	11.70	44.2	0.187	47.6	
Fluoranthene	6.7	0.2	4.05	10.0	0.055	10.2	4.54	4.4	0.072	6.7	
Pyrene	0.9	0.3	3.37	10.8	0.046	10.9	3.71	4.0	0.059	7.3	
Benzo[c]phenanthrene	4.6	0.2	0.23	6.9	0.003	4.1	0.16	41.1	0.003	40.7	
B[ghi]F+CcdP	14.9	0.3	0.68	12.0	0.009	10.0	0.67	44.2	0.011	44.0	
Benz[a]anthracene	16.8	0.3	0.58	9.6	0.008	6.2	0.36	31.6	0.006	31.8	
Chrysene+Triphenylene	6.5	0.3	0.88	13.6	0.012	10.8	0.79	33.9	0.012	33.4	
Benzo[b+j+k]fluoranthene	13.8	0.3	0.87	17.2	0.012	15.1	0.76	7.8	0.012	4.4	
Benzo[a]fluoranthene	7.9	0.3	0.10	15.6	0.001	12.1	0.08	12.3	0.001	14.2	
Benzo[e]pyrene	5.3	0.3	0.39	17.0	0.005	14.6	0.37	7.8	0.006	4.5	
Benzo[a]pyrene	3.4	0.3	0.33	18.9	0.005	15.1	0.28	6.4	0.004	5.8	
Pery lene	4.5	0.3	0.06	17.8	0.001	16.2	0.05	6.3	0.001	6.1	
Dibenz[a,j]anthracene	5.1	0.3	0.05	46.4	0.001	47.5	0.03	3.9	0.001	8.4	
Indeno[1,2,3-cd]pyrene	1.7	0.4	0.30	33.6	0.004	33.4	0.28	6.0	0.004	5.0	
Dibenz[a,h+a,c]A	6.0	0.3	0.10	43.0	0.001	43.9	0.07	5.5	0.001	5.9	
Benzo[b]chrysene	7.3	0.4	0.05	41.6	0.001	42.3	0.04	6.7	0.001	5.6	
Picene	13.1	0.4	0.07	36.3	0.001	36.6	0.06	7.2	0.001	5.6	
Benzo[ghi]pery lene	2.6	0.4	0.43	47.2	0.006	46.7	0.44	6.9	0.007	5.0	
Anthanthrene	11.7	0.6	0.07	33.1	0.001	32.4	0.07	7.4	0.001	11.5	
Coronene	19.3	0.8	< MDL	-	< MDL	-	< MDL	-	< MDL	-	

Table 3. Precision data for PAHs from simultaneous sampling using five identical samplers

a) $RSD(\%) = SD/Mean \times 100$.

대한 재현성 계산결과도 같이 나타내었다. Table 3에서 볼 수 있는 바와 같이 전반적으로 PAHs 분석결과는 TSP 농도의 재현성에 비해서는 떨어지는 것으로 나타 났다. 특히 PAHs 그룹에서 비교적 휘발성이 강하여 증 기상으로 분배되는 정도가 심한 저분자 PAHs의 경우 재현성이 약 20~30%로 나타난 반면, 대부분 입자상으 로 존재하는 벤젠고리 5개의 benzo(ghi)perylene 등은 전반적으로 10~20% 범위의 재현성이 나타났다. 한편, 농도가 낮아서 측정 불확도가 상대적으로 증가하는 물 질들의 재현성은 20~30% 범위로 나타남을 알 수 있 다. 반면에, 고농도로 나타나는 fluoranthene과 pyrene 등의 측정 재현성은 10% 이하로 나타나 전체적인 샘 플러간의 측정오차는 임의오차의 범주에 있는 것으로 판단된다.

2. 검출한계 평가

본 연구에서는 저농도 수준 자료의 신뢰성을 검증하 기 위해 각 분석대상물질의 검출한계를 여러 가지 방 법으로 추정하였으며 그 결과를 Table 4에 나타내었 다. 기기검출한계(Instrumental Detection Limit, 이하 IDL)는 Signal-to-noise 비율(S/N 비) 2.5에 해당하는 피크 면적을 농도 정량식에 대입하여 산정하였다. 한 편, 방법검출한계(Method Detection Limit, 이하 MDL)는 미국 Federal Register에서 공시된 방법의 수 순을 따라 추정하였다.^{16,17)} 즉, 개별 PAH의 IDL 수준 보다 약 4-5배 정도 높은 농도의 용액을 제조하여 5 세트의 공시료에 spiking한 후 실제시료와 동일한 방법 으로 추출과정을 거쳐 분석한 결과의 표준편차에 자유 도 4, 유의수준 1%의 t값을 곱하여 산정하였다. 이때 서영교 • 박대권 • 백성옥

Compounds	MDL ^{a)} by SRM 1649a ^{b)}	MDL by standard solution ^{c)}	IDL ^{d)}	QDL ^{e)}	QDL for ambient air concentration ^{f)}
	(pg)	(pg)	(pg)	(pg)	(ng/m^3)
Naphthalene	31.0	13.4	17.0	93.0	0.058
Biphenyl	-	-	22.7	68.1	0.043
A cenaphthy lene	-	49.6	21.5	148.8	0.093
Acenaphthene	-	70.6	33.3	211.9	0.132
Fluorene	-	66.6	30.3	199.9	0.125
Dibenzothiophene	-	-	21.5	64.6	0.040
Phenanthrene	43.4	62.0	18.6	186.0	0.116
Anthracene	-	38.2	20.6	114.7	0.072
4H-CdefPh	-	-	28.0	84.0	0.052
Fluoranthene	33.4	25.7	17.4	100.2	0.063
Pyrene	26.7	21.7	16.7	80.2	0.050
Benzo[c]phenanthrene	-	-	29.3	87.9	0.055
B[ghi]F+CcdP	-	-	29.5	88.5	0.055
Benz[a]anthracene	-	22.4	23.3	70.0	0.044
Triphenylene	16.0	-	20.0	60.1	0.038
Chrysene	16.0	19.5	22.4	67.1	0.042
Benzo[b+j]fluoranthene	20.4	30.0	27.5	90.0	0.056
Benzo[k]fluoranthene	-	31.8	31.9	95.7	0.060
Benzo[a]fluoranthene	-	-	34.0	102.0	0.064
Benzo[e]pyrene	14.7	36.2	31.1	108.5	0.068
Benzo[a]pyrene	11.6	38.1	36.5	114.4	0.072
Perylene	-	31.5	36.2	108.5	0.068
Dibenz[a,j]anthracene	-	-	61.8	185.4	0.116
Indeno[1,2,3-cd]pyrene	-	123.5	47.6	370.5	0.232
Dibenz[a,h+a,c]anthracene	-	33.4	10.0	100.3	0.063
Benzo[b]chrysene	-	-	87.5	262.4	0.164
Picene	-	-	81.4	244.2	0.153
Benzo[ghi]perylene	14.3	37.2	65.1	195.4	0.122
Anthanthrene	-	-	95.1	285.3	0.178
Dibenzo[b,k]fluoranthene	-	-	121.0	363.0	0.227
Dibenzo[a,h]pyrene	-	-	154.8	464.4	0.290
Coronene	-	15.9	107.5	322.5	0.202
Dibenzo[a,e]pyrene	-	-	172.3	516.9	0.323

Table 4	Estimated	detection	limits	for	PAHs	analyzed	hv	GCMS
Table 7.	Loumateu	ucicciion	mmus	101	1 / 110	analy Zeu	Uy	OC/MI5

a) MDL: Method Detection Limit, as $MDL = SD \times t(n-1, 0.01)$

b) Five samples of the 1649a urban dust (20 mg/ea for dust, 50 ng/ea for BaP) were extracted, and then concentrated to 1 ml before 1 μl injection.

c) Five different standard liquid samples (about 200 ng for BaP) were extracted, and then concentrated to 1 ml before 1 μl injection.

d) IDL: Instrumental Detection Limit, Signal-to-noise ratio for area was approximately 2.5.

e) QDL: Quantitative Detection Limit, which was estimated by 3 times of IDL.

f) QDL (ng/m³) was calculated for norminal condition of 1 ml of final solution, 2 μl injection, and air volume of 800 m³.

IDL의 4.5배 정도 수준의 물질을 spiking하는 이유는 여전히 낮은 농도의 시료이나 시료 중 분석대상물질의 농도가 zero는 분명히 아니라는 점을 의미한다. 본 연 구에서는 MDL 추정을 위해 SRM1649a를 미량 분취 하여 시료와 동일한 방법으로 추출하여 추정한 방법과 저 농도의 표준용액을 추출장치에 spiking하여 시료와 동일한 방법으로 추출하여 추정하는 두 가지 방법을 모 두 적용하였다.

Table 4에서 볼 수 있듯이 일부 PAH의 경우 IDL보 다 MDL이 더 낮은 값을 나타내고 있음을 알 수 있다. 일반적으로 매우 낮은 농도의 용액을 spiking하 여 분석한 결과를 토대로 추정하는 MDL이 IDL보다는

Detection an	nount ratio	Torrat DAILs
Front PUF	Back-up PUF	Target PArts
Less than 50%	Lager than 50%	Naphthalene, Biphenyl, Acenaphtylene, Acenaphthene, Fluorene
50%-85%	15%-50%	Dibenzothiophene
85%-95%	5%-15%	Phenanthrene, Anthracene,
95%-100%	0%-5%	Fluoranthene, Pyrene, Benzo[c]phenathrene, Benzo[ghi]fluoranthene, Cyclopenta[c,d]pyrene, Benz[a]anthracene, Chrysene, Thriphenylene

Table 5. Sampling efficiencies of vapor phase PAHs adsorbed on PUF

더 불확실한 결과를 나타낼 것으로 기대된다. 그러나 MDL은 측정된 농도의 절대치로 산정하는 것이 아니고 분석된 결과의 표준편차를 적용하기 때문에 간혹 분석 재현성이 우수할 경우 표준편차 값은 당연히 적은 값 을 갖게 되며 결과적으로 MDL 값이 아주 낮은 값으 로 추정될 수 있다. 또한 반복 분석의 횟수가 증가할수 록 t값이 작아지므로 MDL값도 낮아지게 되는 경향이 있다. IDL값 역시 S/N비를 어느 수준으로 택하느냐에 따라 MDL값과의 상대적인 크기는 달라질 수도 있다. 그러나 MDL 값이 IDL 값보다 낮게 추정되었다고 해 서 반드시 그 추정치가 옳다고 판단할 근거는 없다. 또 한 MDL값은 실험실마다(혹은 batch 실험 때마다) 다 르게 추정될 수가 있으므로 그 자체로 절대적인 의미 를 갖는다기보다는 최종적으로 보고하는 농도자료의 신 뢰성을 평가하기 위한 하나의 척도로 사용되는 것이 최 선이라고 할 수 있다. 이러한 이유에서 본 연구에서는 정량검출한계(Quantitative Detection Limit, 이하 QDL) 를 추정함에 있어서 MDL과 IDL 중에서 어느 쪽이든 높게 나타난 값을 기준으로 그 값에 다시 3배를 곱하 여 산정하였다.18)

Table 4에 나타낸 대기 중 농도 측면으로 구한 QDL(ng/m³)은 본 연구에서 실제 시료에 적용한 조건으 로 시료의 최종 농축량을 1m/, GC의 시료 주입량을 2µ/, 공기채취유량을 800 m³을 적용하여 추정한 결과 이다. 만약 시료의 농도가 낮을 경우 최종 용액을 0.5 m/(혹은 0.3 m/)까지는 어렵지 않게 농축할 수 있으 므로 QDL은 그 절반값 이하로 낮아질 수 있다. 따라 서 전반적으로 볼 때 본 연구에서 추정한 PAHs의 정 량검출한계는 전반적으로 볼 때 대략 0.1 ng/m³ 수준 으로 나타났다. 한편 dibenzo(b,k)fluoranthene, dibenzo (a,h)pyrene, coronene, dibenzo(a,e)pyrene과 같은 상대 적으로 고분자 PAH의 경우 GC/MS 방법의 분석 감도 가 낮아 검출한계가 높은 것으로 나타났다.

3. PUF의 시료채취능 평가

증기상 PAHs의 채취에 사용된 흡착매체인 PUF의

파과(breakthrough)유무를 평가하기 위해 동일지점에서 재현성이 입증된 5대의 샘플러를 이용하여 총 2회에 걸 쳐 동시에 시료를 채취하였다. 사용한 PUF는 2단 직렬 충전을 하였는데 PUF용 유리카트리지의 용량관계로 불 가피하게 후단에는 전단의 1/2크기를 사용하였다. 미국 EPA TO-17 방법에 의하면 일반적으로 미지의 시료에 대하여 직렬로 2중으로 충전된 흡착관의 전단부 농도 의 5% 이상이 후단부에서 검출될 때 파과가 일어난 것으로 정의하고 있다.¹⁹⁾ Table 5에 증기상 PAHs의 PUF 전후단에서 검출된 농도의 분율을 나타내었다. 벤 젠고리 3개 이상 즉 phenanthrene 이상에서는 증기상 PAHs의 파과율이 대체로 5% 이하이며 naphthalene과 같은 벤젠고리 2개의 휘발성이 강한 PAHs 그룹은 50% 이상의 파과율을 보였다. 한편 벤젠고리 3개인 phenanthrene과 anthracene은 후단부에서 약 10% 정도 검출되어 파과의 징후는 있으나 전체 농도를 고려할 때 그 영향은 크지 않은 것으로 판단된다. 미국 EPA TO-13A방법에서는 naphthalene의 경우 PUF를 이용한 시 료채취효율이 약 35%라고 언급하고 있다.⁹ 한편, 벤젠 고리 4개 이상의 Benzo[i+k]fluoranthene과 같은 고분 자 PAHs는 대부분이 입자상으로 존재하고 있어서 PUF의 전, 후단에서 모두 검출되지 않았다. 파과를 방 지하기 위해 시료채취량을 줄이면 필터에 채취되는 입 자상 PAHs의 시료량이 감소하게 되어 오히려 측정 불 확도가 커지거나 검출한계 이하로 나타나게 되는 문제 가 발생하게 된다. 결과적으로 하이볼륨 시료채취의 경 우 벤젠고리 2개인 저분자 PAHs와 고리가 5~6개인 고분자 PAHs 모두를 동시에 만족하는 시료채취 방법 을 적용하기에는 현실적으로 어려운 부분이 있다.

4. 회수율 평가

본 연구의 PAHs 개별대상물질의 추출에 따른 회수 율을 파악하기 위해 PAHs 개별물질을 이용하여 각각 1µg/m/ 수준의 동일한 농도의 표준혼합용액을 제조하 였다. 이 표준혼합용액 1m/를 사전에 세척된 Filter와 PUF에 각 3개 시료에 주입하여 실제시료와 동일한 방

Table 6. Comparison of recovery efficiencies of PAHs from this study and other studies

References	Baek <i>et al.</i> (1995) ⁸⁾		Park <i>et al.</i> (2000) ¹²⁾			Pyo <i>et al.</i> (2000) ¹³⁾		This study
Spiked amount	ca. 1 µg	2 µg	2 µg	2 µg	15 μg	15 µg	15 µg	ca. 1 µg
Extraction	Soxhlet	ASE ^{a)}	Soxhlet	Sonication	Sonication	Sonication	Sonication	Soxhlet
Solvent	$DCM^{b)}$	DEE+HX ^{c)} (1:9)	DCM	CHX ^{d)}	DCM	BZ+MeOH ^{e)} (1:1)	DEE+HX (1:9)	ACT+HX ^{f)} (1:9)
Clean-up	used	used	used	used	not used	not used	not used	not used
Analysis	HPLC	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS
Number of Data	6	5	5	5	5	5	5	6
Compounds	Recovery ^{g)}	Recovery	Recovery	Recovery	Recovery	Recovery	Recovery	Recovery
compounds	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Naphthalene	22.7	68.8	77.5	46.7	-	-	-	70.0
A cenaphthy lene	27.5	60.2	62.2	58.7	103.9	76.2	66.9	66.9
Acenaphthene	35.2	71.7	72.7	80.3	98.5	69.7	68.2	74.9
Fluorene	53.3	80.3	75.0	77.8	102.7	77.4	72.2	81.8
Phenanthrene	79.3	78.3	76.2	78.8	96.7	84.2	79.4	61.5
Anthracene	74.4	55.2	66.3	53.0	94.0	82.0	83.5	78.3
Fluoranthene	88.8	71.8	68.2	56.3	85.4	82.8	79.5	80.6
Pyrene	93.1	81.4	76.0	66.7	79.4	76.2	78.7	79.5
Benz[a]anthracene	83.7	71.7	66.5	63.8	76.1	86.5	74.3	82.6
Chrysene	86.4	80.8	81.5	80.5	67.1	70.5	76.7	80.9
Benzo[b]fluoranthene	85.9	78.5	73.5	58.7	58.8	67.7	72.8	87.5
Benzo[k]fluoranthene	90.2	75.3	67.8	51.8	63.4	65.3	73.6	89.5
Benzo[e]pyrene	88.3	-	-	-	56.5	60.8	73.7	83.0
Benzo[a]pyrene	86.7	75.3	75.3	68.5	63.4	70.2	72.2	81.5
Perylene	-	-	-	-	60.2	66.6	70.3	78.3
Indeno[1,2,3-cd]pyrene	85.3	70.8	69.5	47.3	74.0	90.6	71.5	93.0
Dibenz[a,h]anthracene	86.1	60.8	54.3	39.7	80.5	88.7	70.9	98.5
Benzo[ghi]pery lene	90.9	77.5	66.5	44.3	63.6	64.6	72.3	84.3
Coronene	88.5	-	-	-	85.1	93.6	66.6	69.5
Total Mean	74.8	72.4	70.6	60.8	78.3	76.3	73.5	80.1

a) ASE: Accelerated Solvent Extraction;
b) Dichloromethane;
c) Diehtyl ether+Hexane;
d) Cyclohexane;
e) Benzene+Methanol;
f) Acetone+Hexane;
g) Recovery(%) = Measured amount / Spiked amount × 100.

법으로 PAHs를 추출·농축한 후 분석하여 회수율을 구 하였다. Table 6에는 본 연구의 PAHs 추출 회수율과 국내 타 연구자의 추출 회수율을 나타내었다. 본 연구 의 평균회수율은 80.1 %로 미국 EPA TO-13A 방법 에서 제시하는 60~120%의 권장영역을 만족하였다.

타 연구결과를 살펴보면 백⁸⁾의 연구에서 벤젠고리 3개 이하의 naphthalene, acenaphthylene, acenaph thene의 회수율이 35.2% 이하로 나타났는데 이는 HPLC 분석 시의 용매치환 과정에서 발생한 손실로 사료된다. 박¹²⁾도 시료정제과정은 수행하였으나 GC/ MS로 분석함으로 인해 용매치환과정은 수행하지 않 았는데 벤젠고리 3개 이하 물질의 회수율이 대략 60% 이상임을 고려할 때 용매치환 과정에서 저분자 PAHs의 손실율은 정량 시에 반드시 고려되어야 할 것으로 사료된다.

박¹²⁾와 표¹³⁾는 다양한 추출방법과 여러 가지 용매로 추출실험을 하여 회수율을 나타내었다. 박¹²⁾의 경우 추 출용매로 cyclohexane과 초음파를 이용한 추출방법이 상대적으로 다른 추출방법에 비해 회수율이 낮은 것을 제외하고 두 연구 결과에서 추출방법과 추출용매 간의 회수율은 대동소이하게 나타났다. 본 연구에서는 추출 용매로 acetone:hexane(1:9)를 사용하였는데, hexane에 acetone을 부피비로 10% 첨가함으로써 극성을 조금 증 가시켜 반극성인 PAHs의 추출을 용이하게 하였다. Hexane과 acetone은 USEPA TO-13A 방법에서 추출 용으로 사용되는 methylene chloride나 diethyl ether보 다 상대적으로 독성이 낮은 물질이면서도 추출성능은 유사하다고 알려져 있다.²⁰⁾

5.정확성 평가

본 연구에서는 PAHs 추출 및 분석방법의 정확성을 평가하기 위하여 미국 NIST에서 공급하는 SRM 1649a(urban dust)를 실제 시료와 같은 방법을 적용하 여 농도를 측정하였다. 그 결과를 SRM1649a의 검증된 농도 보증값과 비교하여 상대오차를 구하여 Table 7에 나타내었다. 본 연구의 정확성 평가 결과 PAHs 측정대 상물질 중 가장 관심사가 높은 benzo(a) pyrene의 경 우 평균상대오차가 14.8%로써 매우 양호한 결과를 나 타내었으며 dibenz(a,j)anthracene과 indeno (1,2,3cd)pyrene을 제외하고는 모두 30%이내의 정확도를 나 타내었다.

대부분의 국내 문헌에서 정확성 평가는 회수율로 나

타내는 경우가 많다. 실제로 회수율과 상대오차는 여집 합의 관계에 있으므로 정확성을 회수율 측면으로 간접 적으로 표현하여도 무방하다고 할 수 있다. 본 연구에 서는 그 정의에 따라 정확성을 '참값'에 대한 '참값과 측정값의 차이'의 상대적 크기를 나타내는 상대오차로 표현하였다. 또한 Table 7에 나타낸 타 연구의 정확성 평가 자료는 회수율 추정 결과를 본 연구의 결과와 비 교하기 위해 상대오차로 재계산하여 나타내었다. 서²¹¹와 김²²¹은 표준참조물질로 용액표준물질을 사용하였으므로 엄밀한 의미의 정확도로는 간주할 수 없었다. 백[®], 정¹¹¹, 박¹²¹, 표¹³¹ 그리고 본 연구에서는 표준참조물질로 미국 NIST의 도시대기먼지를 사용하였다. 본 연구에서와 마 찬가지로 GC/MS로 분석하는 정,¹¹¹ 박,¹²¹ 표¹³¹의 연구에

Table 7. Comparison of accuracy data for PAHs using SRMs or CRMs fro	m various studie:
---	-------------------

References	Seo (198	$(et \ al.$ (38) ²¹⁾	Baek <i>et al.</i> (1995) ⁸⁾	Kim <i>et al.</i> (1996) ²²⁾	Chung <i>et al.</i> (1998) ¹¹⁾	Park <i>et al.</i> (2000) ¹²⁾	Pyo <i>et al.</i> (2000) ¹³⁾	This study
Reference material	SRM 1647	SRM 1647	7 SRM 1649	CRM08-05-001	SRM 1649	SRM 1649a	SRM 1649	SRM 1649a
Spiked amount	-	-	30 mg	-	-	-	-	200 mg
Extraction	Soxhlet	Soxhlet	soxhlet	Sonication	Sonication	ASE ^{a)}	Sonication	Soxhlet
Solvent	DCM ^{b)}	DCM	DCM	BZ:EOH ^{c)} (4:1)	DCM	DEE HX ^{d)} (1:9)	DCM	ACT:HX ^{e)} (1:9)
Clean-up	used	used	used	not used	not used	used	not used	not used
Analysis	HPLC	GC/FID	HPLC	GC/FID	GC/MS	GC/MS	GC/MS	GC/MS
Number of Data	3	6	6	7	6	5	4	9
Compounds	$RE^{f)}(\%)$	RE(%)	RE(%)	RE(%)	RE(%)	RE(%)	RE(%)	RE(%)
Phenanthrene	2.7	18.6	-	-	-	9.3	21.0	5.2
Anthracene	4.5	-	-	-	-	2.6	-	25.3
Fluoranthene	9.2	-	2.8	1.3	11.3	7.0	8.7	3.4
Pyrene	4.1	1.7	-	0.2	2.8	0.5	22.9	6.6
Benz[a]anthracene	4.3	2.4	7.7	1.1	30.8	6.2	29.6	13.1
Chry sene ^{g)}	10.0	13.0	-	1.3	19.4	18.3	9.3	1.8
$Benzo[b] fluoranthene^{h)} \\$	-	-	-	-	4.8	7.3	20.1	11.2
Benzo[k]fluoranthene	-	-	-	-	14.3	12.4	24.5	21.4
Benzo[a]fluoranthene	-	-	-	-	-	-	-	23.9
Benzo[e]pyrene	-	-	-	-	-	-	18.9	17.6
Benzo[a]pyrene	6.4	17.5	6.9	3.2	23.3	3.7	4.3	14.8
Perylene	-	-	-	-	-	-	10.8	14.4
Dibenz[a,j]anthracene	-	-	-	-	-	-	-	27.3
Indeno[1,2,3-cd]pyrene	-	-	9.1	-	24.2	8.2	26.4	37.0
Dibenz[a,h]anthracene ⁱ⁾	10.0	0.3	-	1.2	-	7.8	-	13.4
Benzo[b]chrysene	-	-	-	-	-	-	-	8.2
Picene	-	-	-	-	-	-	-	10.2
Benzo[ghi]perylene	-	-	4.4	-	17.8	13.3	52.8	12.2
Anthanthrene	-	-	-	-	-	-	-	15.5

a) ASE: Accelerated Solvent Extraction

b) Dichloromethane; c) Benzene : Ethanol; d) Diehtyl ether : Hexane; e) Acetone : Hexane

f) Relative Error(%) = (measured value - true value)/true value × 100 (%), true value is the certified value of SRM.

g) Chrysene and triphenylene are combined.

h) Benzo[b]fluoranthene and benzo[j]fluoranthene are combined.

i) Dibenz[a,h]anthracene and dibenz[a,c]anthracene are combined.

서도 indeno(1,2,3-cd)pyrene와 benzo(ghi)perylene의 정 확성이 약 15~30% 수준으로 다른 물질에 비해 떨어짐 을 확인할 수 있다. 이와는 달리 HPLC로 분석하는 백 ⁸⁾의 indeno(1,2,3-cd)pyrene와 benzo(ghi)perylene의 정 확성은 10% 이내로 양호한 수준이었다. 이것은 HPLC 가 GC/MS 칼럼에서 잘 용출되지 않는 고분자 PAHs 분석에 양호한 결과를 나타내는 것으로 판단된다.

IV. 결 론

본 연구에서는 석영섬유필터와 PUF를 장착한 하이볼 륨 PUF 샘플러를 이용하여 환경대기 중 저농도 PAHs 의 입자상과 증기상을 동시에 채취하여 GC/MS로 분석 하였다. 시료채취용 샘플러를 다수로 사용하여 여러 지 점 간 농도를 비교하는 경우 측정 재현성의 확인이 요 구된다. 측정 재현성을 구하기 위해서 샘플러 간 동일 장소, 동일시간에 대한 중복채취시료를 분석하였으며, 측정 재현성은 전반적으로 약 30% 내외인 것으로 나 타났다. 일부 고분자 PAHs의 측정 재현성이 떨어지는 것은 실제 대기 중에 해당물질의 농도가 낮아 상대적 으로 불확도가 크기 때문인 것으로 사료된다. 분석방법 의 정확도는 미국 NIST에서 제공하는 SRM을 이용하 여 평가하였으며, 결과는 매우 신뢰할 만한 수준으로 나타났다. 그러나 coronene과 같은 고분자 PAHs의 경 우 GC/MS의 검출한계가 높아 정량이 어렵다는 점과, 벤젠고리 2개인 저분자 PAHs는 PUF 흡착제의 보유용 량이 낮아 시료채취 중 손실이 발생하여 채취효율이 떨 어진다는 문제점도 나타났다. 증기상 PAHs 시료채취 효율을 고려하면 기급적 저유량에서 XAD-2와 같은 분 말흡착제를 사용하여 증기상 PAHs 시료채취를 수행하 는 것이 바람직하다. 그러나 하이볼륨 시료채취를 실시 할 경우 증기상 PAHs 시료채취를 위한 분말흡착제 사 용에는 한계가 있음에도 불구하고 필터에 채취된 입자 상시료를 여러 조각으로 나누어 중금속 등 다양한 성 분 분석에 이용할 수 있는 장점이 있다. 따라서 연구의 목적이 환경학적 중요성이 높은 벤젠고리 3개에서 5개 의 PAHs를 대상으로 할 경우 하이볼륨으로 입자상 및 증기상 시료를 동시에 채취하여 특별한 정제과정 없이 GC/MS로 분석하는 방법은 비교적 신뢰성 있는 측정방 법이라고 판단된다.

감사의 글

본 연구는 2007학년도 영남대학교의 '교비 학술연구 비'와 한국과학재단의 '이공계 대학원 연구장학금'지 원으로 수행되었으며 이에 감사드립니다.

참고문헌

- Baek, S. O., Choi, J. S. : Effect of ambient temperature on the distribution of atmospheric concentrations of polycyclic aromatic hydrocarbons in the vapor and particulate phases. *Journal of Korea Air Pollution Research Association*, 14(2), 117-131, 1998.
- Ravindra, K., Sokhi, R., Grieken, R. V. : Atmospheric polycyclic hydrocarbons: Source attribution, emission factors and regulation. *Atmospheric Envi*ronment, 42(13), 2895-2921, 2008.
- Baek, S. O. : Atmospheric polycyclic aromatic hydrocarbons - Environmental implications. *Journal of Korean Society for Atmospheric Environment*, 15(5), 525-544, 1999.
- Phillips, D. H. : Fifty years of benzo(a)pyrene. Nature, 303(9), 468-472, 1983.
- ATSDR : Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, Georgia, USA., 2-6, 1995.
- Baek, S. O., Choi, J. S. : Occurrence and behaviour of polycyclic aromatic hydrocarbons in the ambient air(1) - Locational and seasonal concentrations. *Journal of Korean Society of Environmental Engineers*, 18(4), 465-480, 1996.
- Baek, S. O., Choi, J. S. : Evaluation of sampling methodology for the Measurement of Polycyclic aromatic hydrocarbons in the atmosphere. *Journal of Korea Air Pollution Research Association*, 14(1), 43-62, 1998.
- Baek, S. O., Kim, K. N., Choi, J. S. : Determination of polycyclic aromatic hydrocarbons associated with airborne particulate matter using HPLC and Fluorescence Detection. *Journal of Korean Society of Environmental Engineers*, **17**(1), 85-99, 1995.
- USEPA : Compendium Method TO-13A, Determination of polycyclic aromatic hydrocarbons in ambient air using gas chromatography/mass spectrometry, 2nd. Ed., EPA/625/R-96/010b., 1999.
- Baek, S. O., Kim, K. H., Heo, G. S. : Air quality measurements and QC/QA(I) - Principles and methodology. *Journal of Korean Society for Atmospheric Environment*, **20**(2), 237-249, 2004.
- Chung, Y., Park, S. E., Hwang, M. S. : Seasonal variation of size distributions of polycyclic aromatic hydrocarbons in air particulates. *Journal of Korea Air Pollution Research Association*, 14(6), 577-588, 1998.
- Park, C. K., Kim, M. Y., Jung, D. K., Mo, S. Y. : A comparative study on the analytical methods of polycyclic aromatic hydrocarbons in the atmosphere. *Journal of Korean Society for Atmospheric Environment*, 16(6), 595-606, 2000.
- Pyo, H. S., Hong, J. E., Lee, K. J., Park, S. J., Lee, W. : A study on the analysis of polycyclic aromatic

hydrocarbons in air. Analytical Science and Technology, **13**(4), 453-465, 2000.

- 14. Lee, M. D., Lim, Y. J., Lee, S. U., Kong, B. J., Lee, S. D., Han, J. S. : Study on improvement in reliability of measurement and analysis for polycyclic aromatic hydrocarbons in the atmosphere. *Journal of Korean Society for Atmospheric Environment*, 23(5), 515-525, 2007.
- 15. IARC : Agents reviewed by the IARC monographs. volumes 1-99, 2008.
- Glaser, J. A., Foerst, D. L., McKee, G. D., Quave, S. A., Budde W. L. : Trace analysis for wastewaters. *Environmental Science and Technology*, 15(12), 1426-1435, 1981.
- USEPA : Definition and procedure for the determination of the method detection limit, 40 CFR Part 136(analytical procedure), appendix B, 319, 1990.
- ASC committee : Guidelines for data acquisition and data quality evaluation in environmental chemistry.

Analytical Chemistry, 52(14), 2242-2249, 1980.

- USEPA : Compendium Method TO-17, Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes, 2nd. Ed., EPA/625/R-96/010b., 1999.
- Maddalena, R. L., Mckone, T. E., Kado, N. Y.: Simple and rapid extraction of polycyclic aromatic hydrocarbons collected on polyurethane foam adsorbent. *Atmospheric Environment*, **32**(14/15), 2497-2503, 1998.
- Seo, Y. H., Lee, K. W., Heo, G. S. : Determination of polycyclic aromatic hydrocarbons in chimney soot extract by high-resolution gas chromatography. *Jour*nal of Korea Air Pollution Research Association, 4(2), 11-19, 1988.
- 22. Kim, S. C., Lee, T. J., Kim, D. S. : Trends in concentration of polycyclic aromatic hydrocarbons of PM-10 in Suwon area. *Journal of Korea Air Pollution Research Association*, **12**(3), 341-350, 1996.