• Title/Summary/Keyword: Polypropylene(PP)

Search Result 691, Processing Time 0.03 seconds

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

A Study on the Preparation and Hydrophilization of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization (방사선 중합에 의한 폴리프로필렌 정밀여과막의 제조 및 친수화 거동에 관한 연구)

  • 황택성;이선아;황의환
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.621-628
    • /
    • 2000
  • Microporous polypropylene (PP) membranes have the high chemical and corrosion resistance, the good mechanical properties and the thermal stability under high temperatures, but its application is restricted within narrow limits due to hydrophobicity of membranes. In order to impart permanent hydrophilicity to the PP microfiltration membrane, the radiation-induced graft of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc) containing hydrophilic functional group onto the membrane has been studied. The effect of graft conditions such as reaction time, total radiation dose, reaction temperatures, acid compositions on graft yield was investigated. Modified PP membranes were shown to cause an increase in the gas flux. Oil emulsion permeation flux of both original PP membrane and modified PP membrane was examined.

  • PDF

An Experimental Study for the Effect of the Density of Polypropylene Foams on the Absorption of Impact Energy (폴리프로필렌 폼 밀도가 충격에너지 흡수에 미치는 영향에 대한 실험적 연구)

  • Lee, Yoon-Ki;Sung, Won-Suk;Lim, Dong-Jin;Sun, Shin-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2008
  • Polypropylene(PP) foams are widely used as protective materials such as automotive bumper and safety helmet, but whose dynamic behaviour are not well defined. In this paper, the compression tests by Split Hopkinson Pressure Bar were conducted to obtain the stress-strain curve and to investigate the effect of density on the absorption of impact energy in the PP foams. Three kinds of foams were chosen depending upon the density. The result of the experiment has revealed that the stiffness of the low-density PP foam is remarkably increased at high strain rate compared with that of the high-density PP foam. And it is also shown that the absorption of impact energy are greatly influenced by the density of PP foam. These results are expected to be utilized for the development of a protective structure with polymer foams.

Structural Changes of Homopolymer Polypropylene Foam with Molecular Weights and Rheological Properties : (1) In Batch Process (분자량 및 유변 특성에 따른 단일 중합체 폴리프로필렌의 발포체 변화 : (1) 회분식 공정)

  • 홍다윗;윤광중;이기윤
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2002
  • The effects of molecular weights and rheological properties of polypropylene (PP), on its foam structures in batch process were investigated. The effects of crosslinking process were also considered in this study. The rheological properties of polypropylene, such as storage modulus(G'), loss modulus(G"), zero shear viscosity($\eta_O$), and relaxation time($\lambda$), increased with the increase of molecular weights, and these increases in rheological properties directly affected the stability improvements of the PP foam. The increase of crosslinked PP's gel content stopped at the irradiation dose of 3.2 Mrad. The development of foam structures was more enhanced as the irradiation dose increased up to 3.2 Mrad. When the irradiation dose exceeded 3.2 Mrad, however, it negatively affected the structural development of the foam by diminishing gel contents of the foaming material, which resulted in instability of the foam structure.ture.

Effect of Poly(propylene-co-octene) as a Compatibilizer on Mechanical Properties and Weldline Characteristics of Polypropylene/Poly(ethylene-co-octene) Blends (폴리프로필렌/에틸렌-옥텐 공중합체 블렌드의 기계적 성질 및 웰드라인 물성에 미치는 폴리프로필렌-옥텐 공중합체의 영향에 관한 연구)

  • Koo, Hyo-Seon;Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Effect of poly(propylene-co-octene) as a compatibilizer in toughened polypropylene/ poly(ethylene-co-octene) (EOC) was investigated. The EOCs used were metallocene catalyzed commercial linear low density polyethylene and they are elastomeric materials. The poly(propylene-co-octene) was synthesized by metallocene catalyst in our laboratory to be used as a compatibilizer in PP/EOC blends. PP/EOC blends without compatibilizer shows very low mechanical properties in specimens with weldlines while incorporation of a compatibilizer significantly increases the mechanical properties of specimens with weldlines. However, compatibilized PP/EOC blends does not show increased impact property in a weldline free specimen and it is attributed to low molecular weight of the poly(propylene-co-octene) synthesized in present study. It is expected that the poly(propylene-co-octene) having increased molecular weight provides very good performance as an effective compatibilizer in toughened polypropylene/EOC blends.

Biocomposites from polypropylene and corn cob: Effect maleic anhydride grafted polypropylene

  • Husseinsyah, Salmah;Marliza, M.Z.;Selvi, E.
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 2014
  • Biocomposites from polypropylene (PP) and corn cob (CC) were investigated. The effect of corn cob content and maleic anhydride polypropylene (MAPP) as compatibilizer were studied. Results showed that addition of corn cob (CC) in PP have decreased the tensile strength and elongation at break, whereas modulus of elasticity of biocomposites increased. The biocomposites with the MAPP as compatibilizer exhibited higher tensile strength and modulus of elasticity compared biocomposites without MAPP. The morphology study of biocomposites indicates that enhanced the interfacial interaction and adhesion between filler and matrix with the presence of MAPP.

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

Surface Treatment of Polypropylene using a Large Area Atmospheric Pressure Plasma-solution System (대면적 대기압 플라즈마-용액 시스템을 이용한 폴리프로필렌 표면 처리)

  • Tran, Chinh Quoc;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.271-276
    • /
    • 2011
  • We investigated the possibility of introducing functional groups without damaging surface polymeric chains through the treatment of a polypropylene(PP) film immersed in liquid phase using an atmospheric pressure plasma with large area. The ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate: $[BMIM]^{+}[BF_{4}]^{-}$- was successfully applied for generating stable plasmas in the plasma-solution system. We successfully treated the film surface using the plasma-solution system and confirmed various oxygen-containing functional groups formed on the surface of PP film. The surface free energy of PP film was increased with increasing plasma treatment time and power. It also showed a maximum value at the PP sample treated in the ionic liquid solution of 1.5 M. ATR-FTIR analyses revealed the increase of various carbonyl groups(1,726 $cm^{-1}$, 1,643 $cm^{-1}$) and OH groups$(3,100{\sim}3,500\;cm^{-1})$ after plasma treatment of PP film, and XPS also supported the ATR-FTIR result.

A Study on the Dispersion Characteristics of PP/MMT Composites (PP/MMT 복합체의 분산특성에 관한 연구)

  • 김규남;김형수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.374-381
    • /
    • 2000
  • Composites of polypropylene (PP) and organically modified montmorillonite (org-MMT) were prepared by melt mixing in an intensive mixer. Three grades of PP's having different melt viscosities were employed to investigate the dispersion characteristics of the composites with various org-MMT's. Depending on the matrix viscosity and nature of the interlayer in org-MMT significant variations of the phase structure were found. Under the constant mixing condition and matrix viscosity, intercalation of PP chains into the interlayer of org-MMT was possible when initial interlayer distance and packing density were maintained in the optimum range; by which the loss in entropy associated with the confinement of polymer chains was compensated. The state of org-MMT particle dispersion was improved by increasing the matrix viscosity only in the case that dispersed phase is suitable for intercalation process thermodynamically, otherwise little variation was occurred regardless of the matrix viscosity. Due to the lack of specific interaction between PP and erg-MMT considered here, although the intercalation was possible for an appropriate org-MMT, the composites revealed unstable phase structure upon increasing the mixing time, which was characterized by agglomeration of the org-MMT domains.

  • PDF

Synthesis and Characterization of Polypropylene-grafted Graphene Oxide via "Grafting-to" Method (폴리프로필렌으로 그래프트된 그래핀 옥사이드 제조 및 특성 분석)

  • Lee, Jong-Hee;Oh, Chang-Ho;Lim, Jung-Hyurk;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.180-184
    • /
    • 2015
  • PP-grafted GO was prepared by the reaction of graphene oxide (GO) containing 2-bromoisobuyryl groups and polypropylene (PP) having hydroxyl groups (PP-OH) via a "grafting-to" method. GO-Br was synthesized by the reaction of GO and 2-bromoisobutyryl bromide under a basic condition. PP-MAH was reacted with ethanolamine to produce PP-OH. The melting temperature of PP-grafted GO was shifted to the higher temperature than that of PP-OH. Also, the thermal stability of PP-grafted GO was increased as compared to PP-OH and GO. These results demonstrated that the grafted coating polymer PP was effective for enhancing the thermal stability of GO. The higher surface roughness of PP-grafted GO was resulted from the chemical attachment of PP on the surface of GO. The characterization of PP-grafted GO was conducted from Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM).