• Title/Summary/Keyword: Polynomial regression model

Search Result 215, Processing Time 0.029 seconds

Empirical process optimization through response surface experiments and model building

  • PARK, SUNG H.
    • Journal of Korean Society for Quality Management
    • /
    • v.8 no.1
    • /
    • pp.3-7
    • /
    • 1980
  • In many industrial processes, there are more than two responses (i.e., yield, percent impurity, etc.) of interest, and it is desirable to determine the optimal levels of the factors (i.e., temperature, pressure, etc.) that influence the responses. Suppose the response relationships are assumed to be approximated by second-order polynomial regression models. The problems considered in this paper is, first, to propose how to select polynomial terms to fit the multivariate regression surfaces for a given set of data, and, second, to propose how to analyze the data to obtain an optimal operating condition for the factors. The proposed techniques were applied for empirical process optimization in a tire company in Korea. This case is presented as an illustration.

  • PDF

Estimating Moving Object`s Uncertain Position using Polynomial Regression Function (다항회귀함수를 이용한 이동객체의 불확실한 위치 추정)

  • 양은주;안윤애;오인배;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.310-312
    • /
    • 2001
  • 샘플링되지 않은 불확실한 이동객체의 위치값을 추정하기 위한 기존의 연구방범 중 가장 보편적으로 사용하고 있는 방법은 선형 보간법이다. 선형 보간법을 사용할 경우 샘플링 구간은 좁게하여 오차를 줄일 수 있고 계산 시간을 단축할 수 있지만, 연속적인 이동객체의 경로는 직선이라기 보다는 곡선으로 나타내어지므로 샘플링되지 않은 이동객체의 위치값에 대해 불확실한 위치정보를 사용자에게 반환하게 된다. 따라서 이 논문에서는 샘플링된 이동객체의 위치값에 오차가 없다는 가정하에서 모든 위치점을 지나는 보간 다항식을 구해서 처리하는 선형 보간법 대신 이동객체의 위치값 자체의 오차범위까지 고려하는 다항회귀모형(polynomial regression model)을 이용한 이동객체의 불확실한 이동위치 추정방법을 제시한다. 다항회지모형은 이용할 경우 선형 보간법 보다 추정된 위치값에 대한 오차를 줄일 수 있으며, 이동객체의 과거 및 미래 위치값을 사용자에게 반환해 줄 수 있는 장점을 가진다.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

The Sensitivity Analysis of Derailment in Suspension Elements of Rail Vehicle (철도차량 현수장치의 탈선에 대한 민감도 연구)

  • 심태웅;박찬경;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.566-573
    • /
    • 1999
  • This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1$\^$st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms.

  • PDF

Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function (펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF

Beverage Sales Data Analysis and Prediction using Polynomial Models (다항식 모델을 이용한 음료 판매 데이터 분석 및 예측)

  • Lee, Min Goo;Park, Yong Kuk;Jung, Kyung Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.701-704
    • /
    • 2014
  • This Paper proposed the analysis and prediction method of beverage sales. We assumed weather had a relationship with beverage sales. We got the output as sales amount from a temperature and humidity of weather as input by using polynomial equation. We had modelling as quadric function with input and output data. In order to verify the effectiveness of proposed method, the sales data were collected over a 4 months during February 2014. The results showed that the proposed method can estimate sales data.

  • PDF

Minimum Bias Design for Polynomial Regression (다항회귀모형에 대한 최소편의 실험계획)

  • Jang, Dae-Heung;Kim, Youngil
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1227-1234
    • /
    • 2015
  • Traditional criteria for optimum experimental designs depend on the specifications of the model; however, there will be a dilemma when we do not have perfect knowledge about the model. Box and Draper (1959) suggested one direction to minimize bias that may occur in this situation. We will demonstrate some examples with exact solutions that provide a no-bias design for polynomial regression. The most interesting finding is that a design that requires less bias should allocate design points away from the border of the design space.

A study on motion errors due to acceleration and deceleration types of servo motors (서보모터의 가감속형태에 따른 운도오차에 관한 연구)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1718-1729
    • /
    • 1997
  • This paper describes motion errors due to acceleration and deceleration types of servo motors in NC machine tools. Motion errors are composed of two components : one is due to transient response of a servomechanism and the other comes from gain mismatching of positioning servo motors. It deals with circular interpolation to identify motion errors by using Interface card. Also in order to minimize motion errors, this study presents an effective method to optimize parameters which are connected with motion errors. The proposed method is based upon a second order polynomial regression model and it includes an orthogonal array method to make the effective results of experiments. The validity and reliability of the study were verified on a vertical machining center equipped with FANUC 0MC through a series of experiments and analysis.

Estimation of Covariance Functions for Growth of Angora Goats

  • Liu, Wenzhong;Zhang, Yuan;Zhou, Zhongxiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.931-936
    • /
    • 2009
  • Body weights of 862 Angora goats between birth and 36 months of age, recorded on a semiyearly basis from 1988 to 2000, were used to estimate genetic, permanent environmental and phenotypic covariance functions. These functions were estimated by fitting a random regression model with 6th order polynomial for direct additive genetic and animal permanent environmental effects and 4th and 5th order polynomial for maternal genetic and permanent environmental effects, respectively. A phenotypic covariance function was estimated by modelling overall animal and maternal effects. The results showed that the most variable coefficient was the intercept for both direct and maternal additive genetic effects. The direct additive genetic (co)variances increased with age and reached a maximum at about 30 months, whereas the maternal additive genetic (co)variances increased rapidly from birth and reached a maximum at weaning, and then decreased with age. Animal permanent environmental (co)variances increased with age from birth to 30 months with lower rate before 12 months and higher rate between 12 and 30 months. Maternal permanent environmental (co)variances changed little before 6 months but then increased slowly and reached a maximum at about 30 months. These results suggested that the contribution of maternal additive genetic and permanent environmental effects to growth variation differed from those of direct additive genetic and animal permanent environmental effects not only in expression time, but also in action magnitude. The phenotypic (co)variance estimates increased with age from birth to 36 months of age.

Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process (GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용)

  • Oh, Sung-Kwon;Hwang, Hyung-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-105
    • /
    • 1997
  • In this paper, A new design method of fuzzy modeling is presented for the model identification of nonlinear complex systems. The proposed FPNN(Fuzzy Polynomial Neural Network) modeling implements system structure and parameter identification using GMDH(Group Method of Data Handling) method and linguistic fuzzy implication rules from input and output data of processes. In order to identify premise structure and parameter of fuzzy implication rules, GMDH method and regression polynomial fuzzy reasoning method are used and the least square method is utilized for the identification of optimum consequence parameters. Time series data for gas furnace and those for wastewater treatment process are used for the purpose of evaluating the performance of the proposed FPNN modeling. The results show that the proposed method can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF