• Title/Summary/Keyword: Polynomial regression model

Search Result 215, Processing Time 0.029 seconds

Model setup and optimization of the terminal rise velocity of microbubbles using polynomial regression analysis (다항식 회귀분석을 이용한 마이크로 버블의 종말상승속도 모델식 구축 및 운전조건 최적화)

  • Park, Gun-Il;Kim, Heung-Rae;Cho, Il Hyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1393-1406
    • /
    • 2018
  • In this study, three parameters (Pressure ($X_1$), Airflow rate ($X_2$), Operation time ($X_3$)) were experimentally designed and the predicted model and optimal conditions were established by using the terminal rise velocity of the microbubbles as the response value. The polynomial regression analysis showed that the optimum value for the terminal rise velocity at the Pressure ($X_1$) of 4.5 bar, Airflow rate ($X_2$) of 3.3 L/min and Operation time ($X_3$) of 2.2 min was 5.14 cm/min ($85.7{\mu}m/sec$). Also, the highest microbubble diameter size distribution in the range of 2 to $5{\mu}m$ and 25 to $50{\mu}m$ was confirmed by using a laser particle counting apparatus.

Strength Estimation Model of Resistance Spot Welding in 780MPa Steel Sheet Using Simulation for High Efficiency Car Bodies (시뮬레이션을 이용한 고효율 차체용 780MPa급 강판의 저항 점 용접 강도 예측 모델 개발)

  • Son, Chang-Seok;Park, Young-Whan
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.70-77
    • /
    • 2015
  • Nowadays, car manufacturers applied many high strength steels such AHSS or UHSS to car bodies for weight lightening. Therefore, a variety of applied steel sheet to car bodies increased and the needs of simulation to evaluate weldability also increased in order to reduce the cost and time. In this study, resistance spot welding simulations for DP 780 Steel with 1.0 and 1.4 mm thickness were conducted with respect to lobe curve. 2 regression models to estimate tensile shear strength were suggested and they were second order polynomial regression model and optimized second order regression model. The performance of these models was evaluated in terms of the coefficient of determinant and average error rate.

An improved polynomial model for top -and seat- angle connection

  • Prabha, P.;Marimuthu, V.;Jayachandran, S. Arul;Seetharaman, S.;Raman, N.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.403-421
    • /
    • 2008
  • The design provisions for semi-rigid steel frames have been incorporated in codes of practice for steel structures. In order to do the same, it is necessary to know the experimental moment-relative rotation (M-${\theta}_r$) behaviour of beam-to-column connections. In spite of numerous publications and collection of several connection databases, there is no unified approach for the semi-rigid design of steel frames. Amongst the many connection models available, the Frye-Morris polynomial model, with its limitations reported in the literature, is simple to adopt at least for the linear design space. However this model requires more number of connection tests and regression analyses to make it a realistic prediction model. In this paper, 3D nonlinear finite element (FE) analysis of beam-column connection specimens, carried out using ABAQUS software, for evaluating the M-${\theta}_r$ behaviour of semi-rigid top and seat-angle (TSA) bolted connections are described. The finite element model is validated against experimental behaviour of the same connection with regard to their moment-rotation behaviour, stress distribution and mode of failure of the connections. The calibrated FE model is used to evaluate the performance of the Frye-Morris polynomial model. The results of the numerical parametric studies carried out using the validated FE model have been used in proposing modifications to the Frye-Morris model for TSA connection in terms of the powers of the size parameters.

Adaptive Regression by Mixing for Fixed Design

  • Oh, Jong-Chul;Lu, Yun;Yang, Yuhong
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.713-727
    • /
    • 2005
  • Among different regression approaches, nonparametric procedures perform well under different conditions. In practice it is very hard to identify which is the best procedure for the data at hand, thus model combination is of practical importance. In this paper, we focus on one dimensional regression with fixed design. Polynomial regression, local regression, and smoothing spline are considered. The data are split into two parts, one part is used for estimation and the other part is used for prediction. Prediction performances are used to assign weights to different regression procedures. Simulation results show that the combined estimator performs better or similarly compared with the estimator chosen by cross validation. The combined estimator generates a similar risk to the best candidate procedure for the data.

Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm (강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교)

  • Jo, Gwanggon;Ha, Taehwan;Yoon, Sanghoo;Jang, Yuna;Jung, Minwoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

Longitudinal Analysis of Body Weight and Feed Intake in Selection Lines for Residual Feed Intake in Pigs

  • Cai, W.;Wu, H.;Dekkers, J.C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • A selection experiment for reduced residual feed intake (RFI) in Yorkshire pigs consisted of a line selected for lower RFI (LRFI) and a random control line (CTRL). Longitudinal measurements of daily feed intake (DFI) and body weight (BW) from generation 5 of this experiment were used. The objectives of this study were to evaluate the use of random regression (RR) and nonlinear mixed models to predict DFI and BW for individual pigs, accounting for the substantial missing information that characterizes these data, and to evaluate the effect of selection for RFI on BW and DFI curves. Forty RR models with different-order polynomials of age as fixed and random effects, and with homogeneous or heterogeneous residual variance by month of age, were fitted for both DFI and BW. Based on predicted residual sum of squares (PRESS) and residual diagnostics, the quadratic polynomial RR model was identified to be best, but with heterogeneous residual variance for DFI and homogeneous residual variance for BW. Compared to the simple quadratic and linear regression models for individual pigs, these RR models decreased PRESS by 1% and 2% for DFI and by 42% and 36% for BW on boars and gilts, respectively. Given the same number of random effects as the polynomial RR models, i.e., two for BW and one for DFI, the non-linear Gompertz model predicted better than the polynomial RR models but not as good as higher order polynomial RR models. After five generations of selection for reduced RFI, the LRFI line had a lower population curve for DFI and BW than the CTRL line, especially towards the end of the growth period.

MapReduce-based Localized Linear Regression for Electricity Price Forecasting (전기 가격 예측을 위한 맵리듀스 기반의 로컬 단위 선형회귀 모델)

  • Han, Jinju;Lee, Ingyu;On, Byung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.

Application of random regression models for genetic analysis of 305-d milk yield over different lactations of Iranian Holsteins

  • Torshizi, Mahdi Elahi;Farhangfar, Homayoun;Mashhadi, Mojtaba Hosseinpour
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1382-1387
    • /
    • 2017
  • Objective: During the last decade, genetic evaluation of dairy cows using longitudinal data (test day milk yield or 305-day milk yield) using random regression method has been officially adopted in several countries. The objectives of this study were to estimate covariance functions for genetic and permanent environmental effects and to obtain genetic parameters of 305-day milk yield over seven parities. Methods: Data including 60,279 total 305-day milk yield of 17,309 Iranian Holstein dairy cows in 7 parities calved between 20 to 140 months between 2004 and 2011. Residual variances were modeled by homogeneous and step functions with 7 and 10 classes. Results: The results showed that a third order polynomial for additive genetic and permanent environmental effects plus a step function with 10 classes for the residual variance was the most adequate and parsimonious model to describe the covariance structure of the data. Heritability estimates obtained by this model varied from 0.17 to 0.28. The performance of this model was better than repeatability model. Moreover, 10 classes of residual variance produce the more accurate result than 7 classes or homogeneous residual effect. Conclusion: A quadratic Legendre polynomial for additive genetic and permanent environmental effects with 10 step function residual classes are sufficient to produce a parsimonious model that explained the change in 305-day milk yield over consecutive parities of Iranian Holstein cows.

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.