Browse > Article
http://dx.doi.org/10.12925/jkocs.2018.35.4.1393

Model setup and optimization of the terminal rise velocity of microbubbles using polynomial regression analysis  

Park, Gun-Il (Pyunghwa Engineering Consultants Ltd. R&D Institute)
Kim, Heung-Rae (Pyunghwa Engineering Consultants Ltd. R&D Institute)
Cho, Il Hyoung (Global Top Engineering partner Ltd.)
Publication Information
Journal of the Korean Applied Science and Technology / v.35, no.4, 2018 , pp. 1393-1406 More about this Journal
Abstract
In this study, three parameters (Pressure ($X_1$), Airflow rate ($X_2$), Operation time ($X_3$)) were experimentally designed and the predicted model and optimal conditions were established by using the terminal rise velocity of the microbubbles as the response value. The polynomial regression analysis showed that the optimum value for the terminal rise velocity at the Pressure ($X_1$) of 4.5 bar, Airflow rate ($X_2$) of 3.3 L/min and Operation time ($X_3$) of 2.2 min was 5.14 cm/min ($85.7{\mu}m/sec$). Also, the highest microbubble diameter size distribution in the range of 2 to $5{\mu}m$ and 25 to $50{\mu}m$ was confirmed by using a laser particle counting apparatus.
Keywords
Microbubbles; Terminal rise velocity; Polynomial regression analysis; Model; Optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. K. Trinh, L. S. Kang, " Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests", Environ. Eng. Res, Vol.15, pp. 63-70, (2010).   DOI
2 S. M. Lee, C. M. Jang. "Evaluation for the Numerical Model of a Micro-Bubble Pump", Trans. of the Korean Hydrogen and New Energy Society, Vol.27, pp. 121-126, (2016).   DOI
3 S. M. Walke and V. S. Sathe. "Experimental study on comparison of rising velocity of bubbles and light weight particles in the bubble column", International Journal of Chem. Eng. Appl, Vol.3, pp. 25-30, (2012).
4 E. Ruckenstein, "Nano dispersions of bubbles and oil drops in water", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.423, pp. 112-114, (2013).
5 M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp. 1343-1347, (2007).   DOI
6 T. Andinet, I. H. Kim, J. Y. Lee, " Effect of microbubble generator operating parameters on oxygen transfer efficiency in water", Desalination and water treatment, Vol.57, pp. 1-9, (2016).   DOI
7 H. Ikeura, H. Takahashi, F. Kobayashi, M. Sato, "Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture". Journal of Horticultural Science and Biotechnology, Vol.93, pp. 1-8, (2017).
8 N. Matsuki, T. Ishikawa, S. Ichiba, N. Shiba, Y. Ujike, T. Yamaguchi. " Oxygen supersaturated fluid using fine micro/nanobubbles". Int J Nanomedicine, Vol.9, pp. 4495-4505, (2014).
9 R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification-A state-of-the-art report", Chemical Engineering and Processing, Vol.64, pp. 79-97, (2013).   DOI
10 M. Alheshibri, J. Qian, M. Jehannin, V. S. J. Craig, "A history of nanobubbles", Langmuir, Vol.32, pp. 11,086-11,100, (2016).   DOI
11 A. Agarwal, WJ. Ng, Y. Liu, " Principle and applications of microbubble and nanobubble technology for watertreatment", Chemosphere, Vol.84, pp. 1175-80, (2011).   DOI
12 Z. Zhou, Xu. Zhenghe, J. A. Finch, J. H. Masliyah, R. S. Chow, " On the Role of Cavitation in Particle Collection in Flotation-A Critical Review II", Miner. Eng, Vol.22, pp. 419-433, (2009).   DOI
13 K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi. " Development of microbubble aerator for waste water treatment using aerobic activated sludge". Chem Eng Sci, Vol.66, pp. 3172-3179, (2011).   DOI
14 T. Li, L. Guo, J. Zhao, X. Tang, Y. Zhu, "Optimization of micro-bubble aeration process for magnesium sulfite oxidation in desulphurization wastewater with response surface methodology", Desalination and Water Treatment, Vol.82, pp. 308-314, (2017).   DOI
15 Tsuge H. Micro and Nanobubbles: Fundamentals and Applications. P. 45-77, Pan Stanford Publishing, (2014).
16 M. W. Lim, E. V. Lau, P. E. Poh, "Optimization studies for the flotatation of bunker oil from contamianted sand using microbubbles", J. Eng. Sci & Tech, Vol.12, pp. 2046-2063, (2017).
17 R. Ahmadi, A. Khodadadi Darban, "Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology", Int. J. Nanosci. Nanotechnol, Vol.9, pp. 151-162, (2013).
18 A. Smolianski, H. Haario, P. Luukka, "Numerical study of dynamics of single bubbles and bubble swarms", Applied Mathematical Modelling, Vol.32, pp. 641-659, (2008).   DOI
19 M. Takahashi, "${\zeta}$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface", J. Phys. Chem. B, Vol.109, pp. 21858-21864, (2005).   DOI
20 R. Parmar, S. K. Majumder, "Microbubble generation and microbubble-aided transport process intensification - a state of-the-art report", Chem. Eng. Process. Process Intensif, Vol.64, 79-97, (2013).   DOI
21 A.Y Kim, S. K. Yoo, "Process Optimization of Meat Protein Hydrolysate of Ogae Wings by Response Surface Methodology and Its Characteristics Analysis", J. of Korean Oil Chemists' Soc, Vol.15. pp. 63-70, (2010).
22 M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", Japan Journal of Physical Chemistry B, Vol.111, pp.1343-1347, (2007).   DOI
23 Z. Pourkarimi, B. Rezai, M. Noaparast, "Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications". Physicochem. Probl. Miner. Process, Vol.53, pp. 920-942, (2017).
24 I. H. Cho, K. D. Zoh, "Photocatalytic degradation of azo dye (Reactive Red 120) in $TiO_2/UV$ system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design", Dyes and Pigments, Vol.75, pp.533-543, (2007).   DOI