• 제목/요약/키워드: Polynomial model

검색결과 883건 처리시간 0.024초

유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용 (Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process)

  • 이인태;오성권;김현기;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF

진화론적 최적 자기구성 다항식 뉴럴 네트워크 (Genetically Optimized Self-Organizing Polynomial Neural Networks)

  • 박호성;박병준;장성환;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN), discuss a comprehensive design methodology and carry out a series of numeric experiments. The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional SOPNN. In order to generate the structurally optimized SOPNN, GA-based design procedure at each stage (layer) of SOPNN leads to the selection of preferred nodes (or PNs) with optimal parameters- such as the number of input variables, input variables, and the order of the polynomial-available within SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. A detailed design procedure is discussed in detail. To evaluate the performance of the GA-based SOPNN, the model is experimented with using two time series data (gas furnace and NOx emission process data of gas turbine power plant). A comparative analysis shows that the proposed GA-based SOPNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계 (Design of Particle Swarm Optimization-based Polynomial Neural Networks)

  • 박호성;김기상;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

다항회귀분석을 활용한 혼합경량토의 강도산정 모델 개발 (Development of Strength Prediction Model for Lightweight Soil Using Polynomial Regression Analysis)

  • 임병권;김윤태
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.39-47
    • /
    • 2012
  • The objective of this study was to develop a strength prediction model using a polynomial regression analysis based on the experimental results obtained from ninety samples. As the results of a correlation analysis between various mixing factors and unconfined compressive strength using SPSS (statistical package for the social sciences), the governing factors in the strength of lightweight soil were found to be the crumb rubber content, bottom ash content,and water-cement ratio. After selecting the governing factors affecting the strength through the correlation analysis, a strength prediction model, which consisted of the selected governing factors, was developed using the polynomial regression analysis. The strengths calculated from the proposed model were similar to those resulting from laboratory tests (R2=87.5%). Therefore, the proposed model can be used to predict the strength of lightweight mixtures with various mixing ratios without time-consuming experimental tests.

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

IKONOS 위성영상 RPC 자료의 수정보완에 의한 3차원 위치결정 (3-D Positioning by Adjustment of the Rational Polynomial Coefficients Data of IKONOS Satellite Image)

  • 이효성;안기원;신석효
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.279-284
    • /
    • 2004
  • This paper presents on adjustment methods of the vendor-provided RPC(Rational Polynomial Coefficient) of GEO-level stereo images for the IKONOS satellite. RPC are adjusted with control points by the first-order polynomial and the block adjustment method in this study. As results, the maximum error of 3D ground coordinates by the adjusted RPC model did not exceed 4m. The block adjustment method is more stability than the first-order polynomial method.

  • PDF

레이저 스캔 카메라 보정을 위한 성능지수기반 다항식 모델 (Performance Criterion-based Polynomial Calibration Model for Laser Scan Camera)

  • 백경동;천성표;김수대;김성신
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.555-563
    • /
    • 2011
  • 영상의 왜곡보정은 영상 좌표계(이미지)와 전역 좌표계(대상체)의 상관관계를 규정하는 것이다. 기존의 왜곡영상에 대한 보정은 카메라의 광학적 특성을 모델링하여 영상 좌표계와 전역 좌표계의 물리적 관계를 찾는 방식이 주를 이루고 있다. 본 논문에서는 성능 지수기반 다항식 모델을 이용하여 왜곡영상의 보정을 시도하였다. 성능지수기반 다항식 모델은 영상 좌표계와 전역 좌표계 사이의 상관관계를 다항식으로 가정한 후, 이미지와 대상체의 좌표 데이터와 성능지수를 이용하여 다항식 모델의 계수와 차수를 결정하는 방식이다. 제안한 성능지수기반 다항식 모델을 이용하여 기존의 왜곡영상을 보정방식이 가진 과대적합 문제와 같은 한계를 극복하고자 한다. 제안한 방법을 레이저 스캔 카메라로 획득한 2차원 영상에 적용하여 모델의 유효성을 검증하였다.

다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구 (A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis)

  • 채규수
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.1-6
    • /
    • 2019
  • 본 연구에서는 다항식 회귀분석(Polynomial regression analysis) 방법을 이용하여 비선형 특성을 갖는 전자저울의 질량 추정 모델 개발이 이루어 졌다. 전자저울에 사용되는 로드셀의 출력 단자 전압을 기준 질량 추를 사용하여 직접 측정하였고 이 데이터를 이용하여 MS Office 엑셀의 행렬식 계산과 데이터 추세선 분석 기능을 이용하여 다항식 회귀모델을 구하였다. 5kg까지 측정 가능한 로드셀 전자저울을 사용하여 100g단위로 질량을 측정하였고 다항식 회귀분석(Multiple regression analysis) 모델을 구하였으며, 단순(1차), 2차, 3차 다항식 회귀분석에 대한 오차를 구하였다. 각 모델에 대한 회귀 방정식의 적합도 분석을 위해 결정계수(Coefficient of determination)를 제시하여 추정 질량과 측정 데이터와의 상관관계를 나타내었다. 본 연구에서 제안하는 3차 다항식 모델을 이용하여 추정 값의 표준편차가 10g, 결정계수 1.0으로 상당히 정확한 모델을 얻었다. 본 연구에 사용된 선형 회귀 분석 이론을 바탕으로 최근 인공지능 분야에서 많이 사용되고 있는 로지스틱 회귀 분석(Logistic regression analysis)을 활용하여 기상예측, 신약개발, 경제지표 분석 등의 분야에 대한 다양한 연구를 수행할 수 있을 것으로 생각된다.

Reference model generation for tracking and ending in steady final state

  • Ahn, Ki-Tak;Chung, Wan-Kyun;Youm, Young-Ii
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.101-106
    • /
    • 2003
  • In the area of tracking control, it is important to design not only the controllers but also the trajectories to which a system has to follow. $5^{th}$ order polynomial is often used with constraints of initial and final states. Smooth ending with possible minimum time is important for many systems because of vibration or jerky motions. Examples are increased with development of technology in smaller, more accurate systems. On the base of a polynomial like trajectory generation method from a paper in ACC2002 and RIC(Robust Internal-loop Compensator) control scheme of Robotics and Bio-mechanics lab. of POSTECH, generalized and expanded polynomial like trajectory generation method is showed.

  • PDF

빅데이터분석을 통한 도시철도 역사부하 패턴 분석 (Analysis of Electrical Loads in the Urban Railway Station by Big Data Analysis)

  • 박종영
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.460-466
    • /
    • 2018
  • For the efficient energy consumption in an urban railway station, it is necessary to know the patterns of electrical loads for each usage in detail. The electrical loads in an urban railway station have different characteristics from other normal electrical load, such as the peak load timing during a day. The lighting, HVAC, communication, and commercial loads make up large amount of electrical load for equipment in an urban railway station, and each of them has the unique specificity. These loads for each usage were estimated without measuring device by the polynomial regression method with big data such as total amount of electrical load and weather data. In the simulation with real data, the optimal polynomial regression model was third order polynomial regression model with 9 or 10 independent variables.