• 제목/요약/키워드: Polynomial fuzzy system

검색결과 99건 처리시간 0.028초

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계 (The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network)

  • 노석범;장경원;안태천
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구 (A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • 노석범;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

경쟁적 퍼지 다항식 뉴론을 가진 자기 구성 네트워크의 설계 (Design of Self-Organizing Networks with Competitive Fuzzy Polynomial Neuron)

  • 박호성;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.800-802
    • /
    • 2000
  • In this paper, we propose the Self-Organizing Networks(SON) based on competitive Fuzzy Polynomial Neuron(FPN) for the optimal design of nonlinear process system. The SON architectures consist of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as FPN which includes either the simplified or regression Polynomial fuzzy inference rules. The proposed SON is a network resulting from the fusion of the Polynomial Neural Networks(PNN) and a fuzzy inference system. The conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as liner, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. Chaotic time series data used to evaluate the performance of our proposed model.

  • PDF

퍼지 활성 노드를 가진 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks with Fuzzy Activation Node)

  • 박호성;김동원;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2946-2948
    • /
    • 2000
  • In this paper, we proposed the Fuzzy Polynomial Neural Networks(FPNN) model with fuzzy activation node. The proposed FPNN structure is generated from the mutual combination of PNN(Polynomial Neural Networks) structure and fuzzy inference system. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. The structure of FPNN is not fixed like in conventional Neural Networks and can be generated. The design procedure to obtain an optimal model structure utilizing FPNN algorithm is shown in each stage. Gas furnace time series data used to evaluate the performance of our proposed model.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Network and Its Application to Multi-variable Software Process

  • Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki;Pedrycz Witold
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.33-38
    • /
    • 2006
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The conventional FPNN developed so far are based on mechanisms of self-organization and evolutionary optimization. The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed advanced genetic algorithms based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구 (A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm)

  • 박병준;박춘성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

펴지추론과 다항식에 기초한 활성노드를 가진 자기구성네트윅크 (Self-organizing Networks with Activation Nodes Based on Fuzzy Inference and Polynomial Function)

  • 김동원;오성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.15-15
    • /
    • 2000
  • In the past couple of years, there has been increasing interest in the fusion of neural networks and fuzzy logic. Most of the existing fused models have been proposed to implement different types of fuzzy reasoning mechanisms and inevitably they suffer from the dimensionality problem when dealing with complex real-world problem. To overcome the problem, we propose the self-organizing networks with activation nodes based on fuzzy inference and polynomial function. The proposed model consists of two parts, one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules, and its fuzzy system operates with Gaussian or triangular MF in Premise part and constant or regression polynomials in consequence part. the other is polynomial nodes which several types of high-order polynomials such as linear, quadratic, and cubic form are used and are connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method, time series data for gas furnace process has been applied.

  • PDF