• Title/Summary/Keyword: Polynomial Selection

Search Result 102, Processing Time 0.028 seconds

Selection of Data-adaptive Polynomial Order in Local Polynomial Nonparametric Regression

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • A data-adaptive order selection procedure is proposed for local polynomial nonparametric regression. For each given polynomial order, bias and variance are estimated and the adaptive polynomial order that has the smallest estimated mean squared error is selected locally at each location point. To estimate mean squared error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate of Ruppert, Wand, Wand, Holst and Hossjer (1995) are used. Since the proposed method does not require fitting polynomial model of order higher than the model order, it is simpler than the order selection method proposed by Fan and Gijbels (1995b).

  • PDF

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

Efficient Optimization Method for Polynomial Selection (다항식 선택을 위한 효율적인 최적화 기법)

  • Kim, Suhri;Kwon, Heetaek;Lee, Yongseong;Chang, Nam Su;Yoon, Kisoon;Kim, Chang Han;Park, Young-Ho;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.631-643
    • /
    • 2016
  • Currently, General Number Field Sieve(GNFS) is known as the most efficient way for factoring large numbers. CADO-NFS is an open software based on GNFS, that was used to factor RSA-704. Polynomial selection in CADO-NFS can be divided into two stages - polynomial selection, and optimization of selected polynomial. However, optimization of selected polynomial in CADO-NFS is an immense procedure which takes 90% of time in total polynomial selection. In this paper, we introduce modification of optimization stage in CADO-NFS. We implemented precomputation table and modified optimization algorithm to reduce redundant calculation for faster optimization. As a result, we select same polynomial as CADO-NFS, with approximately 40% decrease in time.

Genetically Optimized Hybrid Fuzzy Set-based Polynomial Neural Networks with Polynomial and Fuzzy Polynomial Neurons

  • Oh Sung-Kwun;Roh Seok-Beom;Park Keon-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.327-332
    • /
    • 2005
  • We investigatea new fuzzy-neural networks-Hybrid Fuzzy set based polynomial Neural Networks (HFSPNN). These networks consist of genetically optimized multi-layer with two kinds of heterogeneous neurons thatare fuzzy set based polynomial neurons (FSPNs) and polynomial neurons (PNs). We have developed a comprehensive design methodology to determine the optimal structure of networks dynamically. The augmented genetically optimized HFSPNN (namely gHFSPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of gHFSPNN leads to the selection leads to the selection of preferred nodes (FSPNs or PNs) available within the HFSPNN. In the sequel, the structural optimization is realized via GAs, whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFSPNN is quantified through experimentation where we use a number of modeling benchmarks synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

Enhanced Polynomial Selection Method for GNFS (GNFS를 위한 향상된 다항식 선택 기법)

  • Kim, Suhri;Kwon, Jihoon;Cho, Sungmin;Chang, Nam Su;Yoon, Kisoon;Han, Chang;Park, Young-Ho;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1121-1130
    • /
    • 2016
  • RSA cryptosystem is one of the most widely used public key cryptosystem. The security of RSA cryptosystem is based on hardness of factoring large number and hence there are ongoing attempt to factor RSA modulus. General Number Field Sieve (GNFS) is currently the fastest known method for factoring large numbers so that CADO-NFS - publicly well-known software that was used to factor RSA-704 - is also based on GNFS. However, one disadvantage is that CADO-NFS could not always select the optimal polynomial for given parameters. In this paper, we analyze CADO-NFS's polynomial selection stage. We propose modified polynomial selection using Chinese Remainder Theorem and Euclidean Distance. In this way, we can always select polynomial better than original version of CADO-NFS and expected to use for factoring RSA-1024.

Minimum Message Length and Classical Methods for Model Selection in Univariate Polynomial Regression

  • Viswanathan, Murlikrishna;Yang, Young-Kyu;WhangBo, Taeg-Keun
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.747-758
    • /
    • 2005
  • The problem of selection among competing models has been a fundamental issue in statistical data analysis. Good fits to data can be misleading since they can result from properties of the model that have nothing to do with it being a close approximation to the source distribution of interest (for example, overfitting). In this study we focus on the preference among models from a family of polynomial regressors. Three decades of research has spawned a number of plausible techniques for the selection of models, namely, Akaike's Finite Prediction Error (FPE) and Information Criterion (AIC), Schwartz's criterion (SCH), Generalized Cross Validation (GCV), Wallace's Minimum Message Length (MML), Minimum Description Length (MDL), and Vapnik's Structural Risk Minimization (SRM). The fundamental similarity between all these principles is their attempt to define an appropriate balance between the complexity of models and their ability to explain the data. This paper presents an empirical study of the above principles in the context of model selection, where the models under consideration are univariate polynomials. The paper includes a detailed empirical evaluation of the model selection methods on six target functions, with varying sample sizes and added Gaussian noise. The results from the study appear to provide strong evidence in support of the MML- and SRM- based methods over the other standard approaches (FPE, AIC, SCH and GCV).

  • PDF

Longitudinal Analysis of Body Weight and Feed Intake in Selection Lines for Residual Feed Intake in Pigs

  • Cai, W.;Wu, H.;Dekkers, J.C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • A selection experiment for reduced residual feed intake (RFI) in Yorkshire pigs consisted of a line selected for lower RFI (LRFI) and a random control line (CTRL). Longitudinal measurements of daily feed intake (DFI) and body weight (BW) from generation 5 of this experiment were used. The objectives of this study were to evaluate the use of random regression (RR) and nonlinear mixed models to predict DFI and BW for individual pigs, accounting for the substantial missing information that characterizes these data, and to evaluate the effect of selection for RFI on BW and DFI curves. Forty RR models with different-order polynomials of age as fixed and random effects, and with homogeneous or heterogeneous residual variance by month of age, were fitted for both DFI and BW. Based on predicted residual sum of squares (PRESS) and residual diagnostics, the quadratic polynomial RR model was identified to be best, but with heterogeneous residual variance for DFI and homogeneous residual variance for BW. Compared to the simple quadratic and linear regression models for individual pigs, these RR models decreased PRESS by 1% and 2% for DFI and by 42% and 36% for BW on boars and gilts, respectively. Given the same number of random effects as the polynomial RR models, i.e., two for BW and one for DFI, the non-linear Gompertz model predicted better than the polynomial RR models but not as good as higher order polynomial RR models. After five generations of selection for reduced RFI, the LRFI line had a lower population curve for DFI and BW than the CTRL line, especially towards the end of the growth period.

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

A Study for NHPP software Reliability Growth Model based on polynomial hazard function (다항 위험함수에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rate per fault (hazard function). This infinite non-homogeneous Poisson process is model which reflects the possibility of introducing new faults when correcting or modifying the software. In this paper, polynomial hazard function have been proposed, which can efficiency application for software reliability. Algorithm for estimating the parameters used to maximum likelihood estimator and bisection method. Model selection based on mean square error and the coefficient of determination for the sake of efficient model were employed. In numerical example, log power time model of the existing model in this area and the polynomial hazard function model were compared using failure interval time. Because polynomial hazard function model is more efficient in terms of reliability, polynomial hazard function model as an alternative to the existing model also were able to confirm that can use in this area.