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ABSTRACT

Currently, General Number Field Sieve(GNFS) is known as the most efficient way for factoring large numbers. CADO-NFS
is an open software based on GNES, that was used to factor RSA-704. Polynomial selection in CADO-NFS can be divided into
two stages - polynomial selection, and optimization of selected polynomial. However, optimization of selected polynomial in
CADO-NFS is an immense procedure which takes 90% of time in total polynomial selection. In this paper, we introduce
modification of optimization stage in CADO-NFS. We implemented precomputation table and modified optimization algorithm to
reduce redundant calculation for faster optimization. As a result, we select same polynomial as CADO-NFES, with approximately
40% decrease in time.

Keywords: GNFS, Polynomial Selection, Root optimization

|. Introduction providing privacy and ensuring
authenticity of digital data. The security
RSA cryptosystem is one of the most of RSA cryptosystem is based on hardness
widely used public key cryptosystem for of factoring large numbers. In RSA
cryptosystem, public modulus N is chosen
Received(05. 02. 2016), Modified(06. 01. 2016), as product of two distinct primes p.q of
Accepted(06. 02. 2016) same size(l). Let e,d be two integers
* ‘j E“"‘f;f: 2014@4E 7‘: ‘;]ﬂﬂiitﬂ:)"] ZH;’J% = satisfying ed=1mod¢(N) where
o ZLal ch—x] 4 Z 4\ 1=19 zZ]9]-L- vlo . .
ﬁg ]iaL%“’Hj No. NEF- 72]0314]1\/[3&:70;0649) ' #M) =(p=1)g=1). The pair (Ne) is
t 47}, suhrikim@gmail.com called public key and d is called private
¥ 242}, chkim@semyung. ac.kr(Corresponding author)
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key. Note that by factoring ~N=pq¢ to
obtain p,q, it is easy to find private key.
Hence integer factorization is one of main
topics for research.

General Number Field Sieve (GNFS) is
currently best known algorithm for
factoring large numbers over 110 digits(9].
Factoring based on GNFS is recently
performed by Kleinjung et al. in 2009 for
RSA-768(6), and also by Bai et al. in 2012
for RSA-704(5].

Implementation of GNFS includes
GGNFS, Msieve, and CADO-NFS. GGNFS
is best optimized for factoring up to 160
digit integers and Msieve is best optimized
for factoring up to 130 digit integers.
Meanwhile CADO-NFS was used to factor
RSA-704 (212 digit) so that it is
reasonable to CADO-NFS for
factoring integers over 300 digits(9].

CADO-NFS
Kleinjung's second algorithm and optimizes
selected polynomial in two perspective for
better performance in sieving stage(2]).

consider

selects polynomial using

Since optimization of selected polynomial
takes roughly 90% of total polynomial
selection stage, modification is needed for
faster polynomial selection. We conclude
that redundant
delays optimization time even more. Hence

calculation of values
we implemented precomputation table and
modified root optimization procedure for
faster selection. In this way, we can
generate polynomial with same Murphy E
value as CADO-NFS in shorter time.

This paper is organized as follows : In
Section 2, we cover the concept of GNFS
properties  that  good
polynomial should have. In Section 3, we
briefly
polynomials and
implementation in CADO-NFS. In section
4, we present our modification of root
optimization Following

and  describe

describe optimization of

focus on its

process.

experimental result for our modification is
presented in Finally, we
conclude our result in Section 6.

Section 5.

Il. Background

In this
modern factoring algorithm, GNFS. Next,
method  for
polynomial selection in GNFS. Lastly, two

Section, we Dbriefly describe

we introduce classical
measurement that quantifies polynomial's
qualities are presented.

2.1 General Number Field Sieve

Most of modern factoring algorithms are
based on Difference of squares.” For n=pq
where p,q are two distinct primes,
‘Difference of squares focuses on finding
integers w,y such that
Then by

computing ged(z—y,n) and ged(z+y,n), we

two random
z# ymodn and 2 =y’ modn.
can obtain non-trivial factor of n with
high probability. This idea is extended to
Quadratic Sieve(QS) and later developed
into GNFS.

Instead of searching for random integers
squares, GNFS
searches irreducible monic polynomial f(z)

as in ‘Difference of
of degree greater than 1 and monic linear
polynomial ¢(z) such that f(z) and g(z)
have common root modulo n(7,8].

Let « and 8 be roots of f(z),g(z) not in
Z, . respectively, and consider rings Zal,

Z8]. Goal in GNFS is to find (a,b) pairs
such that a—ba and a—bp are smooth
over chosen basis of primes. We say that
an element is smooth if all of its factors
are member of our chosen basis of

primes.

We collect (ab) pairs where
[[(a—ba)=x? for Xe Za] and
I[(a—b8)=¥* for YEZg]. Consider
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homomorphisms from ring Zlo] and Zg] to
Z, that maps a and S to m. Then there

exist z,y€ Z, such that X, Y are mapped

n

? =y’modn is

to x,y respectively. Hence z
again obtained and non-trivial factors of n
can be found with high probability.
Generally, GNFS is divided into four
stages - polynomial selection, sieving,
linear algebra, square roots - but we
focus on polynomial selection stage of
GNFS. Namely, polynomial selection where
we select f(z) and g¢(z). This is because
that sieving takes over 90%, 80% of total
time for factoring 512 Dbit, 768 bit
numbers, respectively, and choice of
polynomial dramatically affect time to
complete sieving. In next Section, we
briefly describe method for polynomial
selection.

2.2 Classical Polynomial Selection

Classic way to generate polynomial is
using base-m method(11]. The base-m
method expresses number n to be factored
as n=m'+c,_m* " +..+¢. where
el < 5
monic polynomials f(z) of degree d and

for each 4, and generates two

g(z)=xz—m of degree 1 with mmodn as
common root between f(z) and g(z). To
reduce size of coefficient of f(z), this
method is modified to select non-monic

f(x):Ecixi and  g(z)=

polynomial

d
myr—m, such that n=3Yc,,mi 'mi(3).
i=0
We choose m to be close to (n/c,)"?(4). If
¢;— 1s not small enough, try another c,.
Otherwise we optimize the generated

polynomial pair.

2.3 Quantifying Quality of Polynomials

In Section 2.1, we highlighted the
importance of selecting good polynomial.
Since selection of polynomial greatly affect
the number of relations to be found, we
want to select good polynomial in order to
expect good performance in sieving. Hence
quantifying quality of found polynomials is
needed. In this subsection, we present
three measurements of quality, namely,
lognorm, a-value, and Murphy E. Lognorm
and a-value relates to size and root
property respectively, and Murphy E score
is combination of size and root properties.

Recall that aim of sieving stage is to
collect many relations (a,b) such that
a—ba is smooth over chosen basis of
primes where « is root of f(x). Generally,
chosen basis consist of small primes and
hence small value of norm of f(z) is more
likely to be factored by such basis. Thus,
we calculate ‘lognorm’ of polynomial.
Lognorm is logarithmic
polynomial values across sieving region,

average  of

and it is computed as below(4].
27 1
%bg(s*d/‘ / FXscos 0,sin0) > drdg)| .
0 Yo

In above equation, s refers to skewness
of sieving region, calculated by ratio of a,b
(4]. Hence small lognorm means size of
polynomial is small so that it is more
likely to be smooth over our chosen basis
of primes. Thus we are searching for
polynomial with smaller lognorm as
possible. Since g¢(x) is linear, we may
assume size of g(z) does not vary much
across sieving region than f(z). Therefore,
in practice we only focus on lognorm of
f(@).

If a polynomial f(z) has many roots
modulo small prime powers, then we can
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expect that polynomial values to behave
more smoothly than random integers about
the same size. We define expected p

-valuation of z as Vp(a:), where value of

v,(z) is exponent of the largest power of
prime p dividing z in set of integers S,

and v,(0)=c. We use same notation for

polynomials to let v,(f) refer to expected p
-valuation of f in set S.
Murphy  defined «(F)
compare cumulated expected p-valuation of
polynomial values to random integers of
similar size(4). Hence, o«(F) can be

function to

considered as logarithmic benefit of using
polynomial values compared to using
random integers. We call a(F) as a-value
of polynomial and is defined as below.

alF) = Z (p%_ pjﬂp )logp

p= B —1
= (1_ in) logp
=B p+1/p—1"

In above equation, n, refers to number
of simple or multiple root of f(z) modulo
p° for p°< B. Combining f(x) and g(z) we
can approximate number of sieving reports
as equation below(4,11].

=N

log B.

loglG(ay)l+ a (G)
log B,

bngy|+a())

)dxdy.

Above measurement is called Murphy E’
of polynomials. Since collecting as many
relation as possible is goal in sieving
stage, larger Murphy E implies that it is
more likely to have large number of
sieving reports in sieving stage. Hence we
focus on selecting f(z),g(z) with larger
Murphy E value.

I1l. Polynomial Optimization

Through polynomial generation described
in Section 2.2, we can obtain polynomial
whose size of first three leading
coefficients are small. We namely call this
output f(z) of polynomial generation stage
as Traw polynomial. However to have
better performance in sieving stage,
optimization of raw  polynomial is
necessary.

In this section, two optimization stages
for better lognorm and Murphy E, are
described. In Section 3.1, size optimization
for smaller lognorm is described. In
Section 3.2, root optimization for larger
Murphy E is  described.

optimization takes 90% of total time of

Polynomial

polynomial generation stage, and root
optimization for better Murphy E values
takes 90% of total time in polynomial
optimization.

3.1 Size Optimization

The goal of size optimization is to obtain
polynomial f(xz) with smaller lognorm.

Note that for f(z Ecx size of first

three leading coefﬁclent Cp Cq—y, and c,_,

are controlled during polynomial
generation. However other coefficients are
left uncontrolled. Thus size optimization
through
translation and other coefficients through
rotation.

We call computing f(z+k) and g(z+k)

as translation. To reduce size of c¢; 4

focuses on controlling ¢,

effectively, right choice of &k is needed. Let

d d
flz+k) E (x+Fk) Z We  want

a;_; to be small after translation. Note
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g)cdk3 + (g)cd_]kQ +dc; sk+c; 4

and consider a,_; as function of k. Then

that Qy_y =

we may write a,_; as h(k)=a;_5=
(g)cdk:3+(g)cd_1k2+dcd_2k+cd_3. Let a be
nearest integer of k& where h(k)=0. Then
translating f(z) by a, we can expect to
have small a,_,. Since degree of h(k) is 3,
there are at most 3 values of a for
translation. We calculate f(z+a) for each
a and check its lognorm. If lognorm of
flz+a) is smaller than f(x), we replace
flz) by flz+a). If not, f(z) is left
unchanged and we continue to next
optimization stage.

After translation, we rotate f(z) and
obtain f(2)+(wz’*+uz+v)g(z) to reduce
size of last three coefficients. As stated

Algorithm 1

d
Input : Polynomial pair f(z)=Y,¢a’
=0

g(z) =mymx—m,

Integers U, V, B
Output polynomial pair f(z),g(x) of
smaller lognorm.

l. k=w=u=v=1;
2. while minimum is found or loop limit
is reached do

2.1 f'(2)=flw k). ¢ (x) = g(x) & km,

2,2 if either L*(f') < LAf) then
221 f=f",9=g", k=2k

2.3 else
2.3.1 k= [k/2]

2.4 f'(z) =f(z) twa’g(x)

2.5 if either L*f') < L*f) then
251 f=f,w=2w

2.6 else
2.6.1 w=[w/2]

3. return f(z),g(x)

above, we use quadratic rotation in order
properties  of
translated polynomial. Hence after each

to preserve the size

rotation, lognorm is calculated to check
polynomial’s size property. If lognorm of
rotated polynomial is larger than original,
f(z) remain unchanged and move to root
optimization stage.

As a summary, total procedure of size
optimization is described in Algorithm
1(4). Note that L2(f) indicates lognorm of
flz).

3.2 Root Optimization

In order to have good root property in
terms of «-values, root optimization is
performed after adjusting polynomial size
through size optimization. Good root
property roughly requires polynomial to
have many roots modulo small prime and
prime powers. Total outline of root
optimization procedure is as follows. We
rotate f(x) and check root property of
f(z)+h(x)g(x). That is, we record roots
modulo small prime and prime powers of
f@)+h(x)g(x). After
finished for all possible h(z) we replace
f(x) to one of f(m)+h(m)g(m) having
highest Murphy E values among all
others. We consider quadratic rotation in
order to preserve size property obtained by

rotation  has

size optimization. Thus h(z) can be
written as h(z)=waz’4+uzr+v. and we
search for (w,w,v) such that rotated
polynomial f($)+(wx2+ux+v)g(x) has
good root properties. Since linear rotation
is faster than quadratic rotation, we first
search for w, sets f(x):f(m)+wx29(:1c)
and find (u,v) such that
fuw= f(x)+ (uaz-i—v)g(az) has good root

property by linear rotation. Intuitive
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approach for root optimization is to check
a-value of f,, for all possible (u,v).
However, since bound of w,v are huge,
this is time consuming process. Therefore,
Murphy uses sieve-like procedure to find
polynomial with good root properties(11].

Idea is that when » is root of
fu(@) = 0modyp*

fu+1'p‘4, v+ 5p° (l‘)

fuo(@)modp® so that r is also root of

fuﬂ.p,‘ e (2) = 0modp® for i,jEZ.

Let B be bound for small primes and
U,V be bound for v and v respectively.
Algorithm 2 describes Murphy's root sieve
which is wused as base method for
CADO-NFS's root optimization(4]).

Algorithm 2

Input : Polynomial pair f(z),g(z),
Integers U, V, B

Output @ array of approximated a-values

of dimension UX V'

1. For p< B do
1.1 For e where p° < B do
1.1.1 For z<€[0,p°—1] do
1.1.1.1 For u€[0,p° —1] do

1.1.1.1.1

compute v in f,,(z) = 0modp®
1.1.1.1.2

update v (f ) by sieving

PN u+ipS o+ ip°

3.3 Application in CADO-NFS

In Section 3.2, Algorithm 2 works for
bounds U V.
polynomial

However, for
than 6,
permissible U,V bounds are large. Hence
CADO-NFS uses modification of Algorithm
2 for faster root sievel(4]. The core idea is

small

of degree greater

that if r is simple root of f(z)=0modp,
then p-valuation can be easily estimated

so that there is no need to count the
lifted roots. We determine simplicity of
roots by using Hensel's lemma. We call
simple root
f'(r) #0modp and multiple root modulo p
if f'(r) = Omodp .

Recall that if =, is a simple root of

root r is modulo p if

rotated polynomial f,,(z)modp® for e=1

then is also simple root for

[

fH,l.pp’ij,modpe. Since the contribution of

the root r, to v,(£,,) is p/(p’—1). we can
update the score for all rotated
polynomials of the form f,.;,,+,() in
sieve.

If r, is a multiple root of f(z)modp® and
f(r,)=0modp*™ then r, can lifted to p
number of roots modulo p°™! such that
1€0.p).
Additionally, the lifted roots r.., are also

r,.,=r,+Ilp° for all integer

multiple since f'(r,.;) =0modp. Whereas if

f(r,) = 0modp** | r, cannot be lifted to a

root modulo p¢™!. Note that in order for r
to be multiple root modulo p for some
rotated polynomial f,,(z)modp, it should
satisfy equation f(r)+(ur+v)g(r) =0modp
and f'(r)+ug(r)+(ur+v)g'(r) = Omodp .
Since (ur+v)=—f(r)/g(r)modp, we can
obtain following equation.

ug®(r) = f(r)g" (r) = f'(r)g(r) modp. (1)

Hence if r is root of f(z) modulo p and if

ug*(r) —f(r)g' (r)+ £ (r)g(r) (2)

is divisible by p, then r is multiple root of
f(z) modulo p. If r is multiple root of
fuo(@)modp, lifting is needed for counting
the lifted roots.

CADO-NFS divides root
into two stages. In the first stage, it

optimization
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searches for pair (ugv,)mod(p;...p,") such
that f, , () has many roots modulo prime
powers for first m smallest primes. In

second stage, it applies root sieve to
Jupwyz) fOr larger prime powers up to some
bound B.

Naive way for selecting (uyv,) for given

f(z) in first stage is to generate matrix of
2

and chose

1

11

i=1

pairs of (u,v) with size

one (u,v) that best generates polynomial
with good root property. This approach is
possible only if size of matrix is small. In
CADO-NFS, m individual polynomials
fuup(@) (1=<i<m) is founded for each

prime p; that has many roots modulo

small p?’. Then by Chinese Remainder

Theorem(CRT) we calculate
(ug;vy) mod(p,'..p,")  to obtain combined
polynomial Fup (@) . Note that

C,
fu,n, (@) modp;” has same number of roots as

ful_rw/(x)modp?' for 1<:<m . Since we

selected (u;v;) such that f, ,(z)modp; to

have many roots, combined polynomial
fu”.,vu(x) is also likely to have many roots

em

modulo small prime powers of p',....p,".

Second stage of root sieve is analogous
to first stage except for the fact that it
uses larger primes. Let M=][p] and

i=1
(ugvy) be fixed as in first stage. Recall
that we used sub-lattice defined by (u,v)
in first stage. In second stage, we do root
sieve for larger prime powers on
sub-lattice defined by (u,+~Mv,+8M).

As a summary, modification of Algorithm

2 for faster root sieve is described in
Algorithm 3(4).

Algorithm 3
Input : Polynomial pair f(z),g(z),
Integers U, V, B

an array of murphy E of

Output
dimension UX V

1. For p< B do
1.1. For z€[0,p—1] do
1.1.1 compute u such that
ug*(z) = f(z)g’ (z) = f' (2)g(z) modp
1.2. For u€[0,p—1] do
1.2.1. compute v such that
flz) +uxg(z) +vg(z) = Omodp
1.2.2. if u=u
1.2.2.1 then update v,(f, i ,4,)
in sieving
1.2.3 else
1.2.3. 1lift to count multiple roots
of f&#;(;c)modp6 such that
(u,v) = (u,v) modp, wv < p°

p°< B and then sieve:

IV. Proposed Method

In this Section, we proposed our
modification for faster root sieve. We
implemented precomputation table to

reduce the amount of redundant
calculation. We also modified searching
procedure at beginning of second stage of
number  of

root sieve and reduced

sub-lattice for faster root sieve.

4.1 Table Implementation

Since root optimization in CADO-NFS
has redundant calculation of values, one
way to CADO-NFS's  root
optimization procedure is to reduce the
number of such calculation. Note that for

optimize

each prime p, and for each 0< u<p and

for each 0<r<p, -equation (2) is
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calculated in order to determine whether
root is simple or not. Note that when
p=2, equation (2) is
(u,r)=(1,1). But when p=3, equation (2)

is again calculated for (u,r)=(1,1). Hence

calculated for

f(r) for 0< r<p is calculated repeatedly
for some value.

Thus instead of calculating equation (2)
for each v and r, we precompute

{ug(r)? = f(r)g" () + £ () g(r) fmodp (3)

and record this value along with w,r,p. In
this way, we can look up for value in
table when needed instead of calculating
every time. Note that since prime p is
smaller than 199 in practice, we can make
size of each entry of precomputation table
to be 8 bits.

When generating precomputation table,
order of computation for calculating wug(r)?
is modified. In CADO-NFS, it fixes value
v and calculates wg(r)? for 0< r<p . For

example, when w«=2, it calculates
9(0)*x2, g(1)*x2
fix value r and calculate wug(r)>. For
example, when r=0, we
g(0)2x2,  g¢(0)*x3, and so on. By
modifying the order of calculation,

multiplication is not needed -

and so on. Instead, we

calculate

when
calculating ¢(0)*x<w we add ¢(0)? instead.
Hence if we precalculate g¢(r)? for
0<r<199 , we can generate ug(r)® only

by addition. Since addition is faster than

multiplication, we can expect shorter
computation time.
Comparison of computation between

CADO-NFS and table implementation is
shown as Table 1.

Number of computation is examined
based on RSA-768 number with leading
coefficient of f(x) as 265482057982680(6).
Total number of calculation refers to the

Table 1. Comparison of calculation of

ug(r)®> —f(r)g" (r)+f () g(r)

CADO-NFS Table
Total number-| 1 999 9 11,940
of calculation
Total number |14 999 999 11,940
of division
number of multiplication needed for

calculating equation (2) during root
optimization period. Since f(r)g'(r) and
f'(r)g(r) are precalculated, we only need
when

to consider 2 multiplications

computing equation (2). Specifically, we

consider 2 multiplications needed for

ug(r)® - one for computing ¢(r) xg(r) and
one for computing uxg(r)?. Total number
of division refers to the number of division
for checking existence of ¢(r) "'modp and
computation of equation (3) that checks
whether computed root is simple root or
multiple root.

In summary, total 2 multiplications and
2 divisions occurs for one round of root
sieve in root optimization. Since there
exist average 10,000 rounds of root sieve
per one pair (p,p,) of primes, this table
implementation can lead to significant
decrease in number of computation.

4.2 Modification of Root Sieve Process

In first stage of 7root sieve in
CADO-NFS, it searches for top 3 w values
and records (w,u,v) along with a-values
in array such that

flz)+ (wa:2+ux+v)g(a:)

has good root property for first 10 smallest
primes. In beginning of second stage of
(w,u,v) pairs

root sieve, it extracts

recorded in array and rotate f(z) to
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generate f(z)+ (wz? +uz+v)g(z). Next
it tests root property of rotated polynomial
for first 45 primes and reorder (w,u,v) by
a-value. After this step, it focuses on
searching good (u,v) for larger prime that
has good root property.

However, at beginning of second stage,
testing root properties with larger primes
does not change any (w,u,v) of recorded
pairs. In other words, elements in input
array is same as output array except for
recorded order. Fig. 1 and Fig. 2 depicts
the recorded (u,v) pairs in end of first
stage and after first step of second stage,
respectively.

In Fig. 1 and Fig. 2, z-axis indicates
value of v and y-axis indicates value of v.
As shown in Fig. 1 and Fig. 2, no extra
(u,v) was recorded to array nor extra (u,v)
was deleted in array. This result is
p-valuation

natural since expected

decreases as prime increases. Hence effect
on a-value of polynomial due to inclusion
of more primes can be negligible.
Therefore, it is possible to delete
beginning of second stage and immediately
move to step where deep search on (u,v)
for larger prime is performed.

As a summary, total procedure of
modification of root optimization algorithm
is described in Algorithm 4.

Algorithm 4

(a) alpha_pqueue
12

=
*e
.
*
.
L]

[ ] L
4 . . *
> [ ] L) [ ] L L
le L] -
L ] .
0 e L * * * * * * -

[}

4 6 8 10 12

u

Fig. 1. Recorded (u,v) pair after first stage

(b) tmp_alpha_pqueue

Input : Polynomial pair f(z),g¢(z),
Integers U, V, B
Array of dimension :
Output an array of murphy E of

dimension UX V'

1. Precomputation
1.1 For p< B do
1.1.1For z<[0,p—1] do
1.1.1.1 For u€[0,p—1] do
1.1.1.1.1 Compute
H=ug*(z)— f(2)g' (z)+f (z)g(z) modp
1.1.1.1.1 Save H in array Alz]u]lp]

2. For p< B do
2.1. For z=[0,p—1] do
2.1.2. For u€[0,p—1] do
2.1.2.1. compute v such that
flz) +uxg(z) +uvg(z) = Omodp
2.1.2.2. if Alz]lullp] =0

21.2.2.1 update  v,(fuiipoip)
in sieving
2.1.2.3 else

2.1.2.3.1 1ift to court muitigle roots of
fiﬁ;(x)modpe sch  tht
(u,v) = (u,v)modp, w0 < p°

p° < B adthensiew

Fig. 2. Recorded (u,v) pair after first step of
second stage
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V. Experimental Result

Experiments were performed using gcc
version 4.9.2 with Intel Core i5-4690K
processor at 3.5GHz with 8GB RAM. We
used CADO-NFS 2.1.1 version for size
optimization.

Table 2 is the experimental result for
average time took for 6 number of root
optimizations. Experiment was done with
RSA-768 number with 265482057982680 as
leading coefficient of degree 6 polynomial
f(z)(6). We wused P=1000000 so that
p,p,E [P2P], where p,,p, are prime factor
of leading coefficient of g(x).

In Table 2, total time for polynomial
selection refers to time it takes to search
polynomial for one leading coefficient of
f(z). This includes polynomial generation
along with size and root optimization.
With our selection of input parameters,
CADO-NFS found 6 collision pairs (p;,p,)

so that 6 number of root optimization
occurred. Hence average time in Table 2
refers to average time for one polynomial
selection. As stated in Table 1, due to our
modification, we select same polynomial as
in CADO-NFS with 41.5% decrease in
total time for polynomial selection.

Table 3 denotes the experiment results
for average time took for 24 number of
root optimizations. Experiment was done

Table 2. Comparison of Average Time on Root
Optimization.

CADO-NFS Modified

Total time for

polynomial 1185.87 693.44

selection (s)
Average time
for polynomial 193.14 115.55
selecletion (s)
Best ~18 ~18
Murphy E 8.84 <10 8.84 < 10

Table 3. Comparison of Average Time on Root
Optimization.

CADO-NFS Modified
Ad range 265482057982680 ~
ne 265482057988680
Number of 24 24
optimization
Total time for
polynomial 20926.44 9238.95
selection (s)
Average time
for root 870.39 383.45
optimization(s)
Best —23 —23
Murphy E 4.58 X 10 4.58 <X 10

with RSA-768 number with f(z) of degree
6. In Table 3, ad range refers to the range
of leading coefficient of f(z). We used
P=10000.

As in Table 3, our modified version
selects same polynomial as in CADO-NFS.
Furthermore, it optimizes polynomial in
55.94%
optimization. This
decrease

decrease in time for root
brought 55.85%
in total time for polynomial
selection.

VI. Conclusion

In this proposed table
implementation of root optimization in
CADO-NFS. When
precomputation table,

paper, we

generating
we modified the
order of computation for faster calculation.
As a result, we calculated values using
addition CADO-NFS used
multiplication to obtain same value.
Additionally, we
sub-lattice for

whereas

reduce  size  of
faster root sieve. By
experiment, reducing number of sub-lattice
does not effect the quality of output
polynomial. In this way, we can generate
polynomial with Murphy E value same as

CADO-NFS but in shorter time.
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Note that since Murphy E value greatly
relates to number of expected relation in
sieving stage, simply reducing time in
polynomial selection without considering
output polynomial's Murphy E value is
useless.

However, as in Section 5, our

modified version selects same polynomial

as in CADO-NFS but in shorter time.
Thus we expect to search more
polynomials than CADO-NFS in same

amount of time and hence have higher
probability of selecting better polynomial.
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