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요   약

현재까지 알려진 가장 효율적인 인수분해 방법은 General Number Field Sieve (GNFS)를 이용하는 방법이다. 

CADO-NFS는 GNFS를 기반으로 구현된 공개된 소프트웨어로 RSA-704의 인수분해에 사용된 도구이다. 

CADO-NFS에서 다항식 선택은 크게 다항식을 생성하는 과정과 이를 최적화하는 과정으로 나누어져 있다. 그러나 

CADO-NFS에서 다항식의 최적화 과정은 전체 다항식 선택 소요 시간 중 약 90%를 차지할 정도로 큰 부하를 주고 

있다. 본 논문에서는 사전 연산 테이블을 이용하여 다항식 최적화 과정의 부하를 줄이는 방안을 제안한다. 제안하는 방

법은 기존 CADO-NFS의 다항식과 같은 다항식을 선택하지만, 다항식 선택에 걸리는 시간은 약 40% 감소한다.

ABSTRACT

Currently, General Number Field Sieve(GNFS) is known as the most efficient way for factoring large numbers. CADO-NFS 

is an open software based on GNFS, that was used to factor RSA-704. Polynomial selection in CADO-NFS can be divided into 

two stages – polynomial selection, and optimization of selected polynomial. However, optimization of selected polynomial in 

CADO-NFS is an immense procedure which takes 90% of time in total polynomial selection. In this paper, we introduce 

modification of optimization stage in CADO-NFS. We implemented precomputation table and modified optimization algorithm to 

reduce redundant calculation for faster optimization. As a result, we select same polynomial as CADO-NFS, with approximately 

40% decrease in time.
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I. Introduction* 

RSA cryptosystem is one of the most 

widely used public key cryptosystem for 
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providing privacy and ensuring 

authenticity of digital data. The security 

of RSA cryptosystem is based on hardness 

of factoring large numbers. In RSA 

cryptosystem, public modulus  is chosen 

as product of two distinct primes   of 

same size[1]. Let   be two integers 

satisfying    where 

  . The pair   is 

called public key and  is called private 
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key. Note that by factoring  to 

obtain  , it is easy to find private key. 

Hence integer factorization is one of main 

topics for research. 

General Number Field Sieve (GNFS) is 

currently best known algorithm for 

factoring large numbers over 110 digits[9]. 

Factoring based on GNFS is recently 

performed by Kleinjung et al. in 2009 for 

RSA-768[6], and also by Bai et al. in 2012 

for RSA-704[5].

Implementation of GNFS includes 

GGNFS, Msieve, and CADO-NFS. GGNFS 

is best optimized for factoring up to 160 

digit integers and Msieve is best optimized 

for factoring up to 130 digit integers. 

Meanwhile CADO-NFS was used to factor 

RSA-704 (212 digit) so that it is 

reasonable to consider CADO-NFS for 

factoring integers over 300 digits[9].

  CADO-NFS selects polynomial using 

Kleinjung’s second algorithm and optimizes 

selected polynomial in two perspective for 

better performance in sieving stage[2]. 

Since optimization of selected polynomial 

takes roughly 90% of total polynomial 

selection stage, modification is needed for 

faster polynomial selection. We conclude 

that redundant calculation of values 

delays optimization time even more. Hence 

we implemented precomputation table and 

modified root optimization procedure for 

faster selection. In this way, we can 

generate polynomial with same Murphy E 

value as CADO-NFS in shorter time.

  This paper is organized as follows : In 

Section 2, we cover the concept of GNFS  

and describe properties that good 

polynomial should have. In Section 3, we 

briefly describe optimization of 

polynomials and focus on its 

implementation in CADO-NFS. In section 

4, we present our modification of root 

optimization process. Following 

experimental result for our modification is 

presented in Section 5. Finally, we 

conclude our result in Section 6.

II. Background

  In this Section, we briefly describe 

modern factoring algorithm, GNFS. Next, 

we introduce classical method for 

polynomial selection in GNFS. Lastly, two 

measurement that quantifies polynomial’s 

qualities are presented. 

2.1 General Number Field Sieve

  Most of modern factoring algorithms are 

based on ‘Difference of squares.’ For   

where   are two distinct primes, 

‘Difference of squares’ focuses on finding 

two random integers   such that 

≠   and  ≡ . Then by 

computing    and  , we 

can obtain non-trivial factor of  with 

high probability. This idea is extended to 

Quadratic Sieve(QS) and later developed 

into GNFS.

  Instead of searching for random integers 

as in ‘Difference of squares,’ GNFS 

searches irreducible monic polynomial  

of degree greater than 1 and monic linear 

polynomial  such that  and  

have common root modulo [7,8].

  Let  and  be roots of   not in 

, respectively, and consider rings , 

. Goal in GNFS is to find   pairs 

such that  and  are smooth 

over chosen basis of primes. We say that 

an element is smooth if all of its factors 

are  member of our chosen basis of 

primes. 

  We collect   pairs where 

   for ∈ and 

  for ∈. Consider 
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homomorphisms from ring  and  to 

 that maps  and  to . Then there 

exist  ∈ such that  are mapped 

to   respectively. Hence  ≡ is 

again obtained and non-trivial factors of  

can be found with high probability.

  Generally, GNFS is divided into four 

stages – polynomial selection, sieving, 

linear algebra, square roots – but we 

focus on polynomial selection stage of 

GNFS. Namely, polynomial selection where 

we select  and . This is because 

that sieving takes over 90%, 80% of total 

time for factoring 512 bit, 768 bit 

numbers, respectively, and choice of 

polynomial dramatically affect time to 

complete sieving. In next Section, we 

briefly describe method for polynomial 

selection. 

2.2 Classical Polynomial Selection

  Classic way to generate polynomial is 

using base- method[11]. The base- 

method expresses number  to be factored 

as 
 , where  

≤ 


 for each , and generates two 

monic polynomials  of degree  and  

   of degree 1 with  as 

common root between  and .  To 

reduce size of coefficient of , this 

method is modified to select non-monic 

polynomial  





 and  

 such that 







 [3]. 

We choose  to be close to 
[4]. If 

 is not small enough, try another . 

Otherwise we optimize the generated 

polynomial pair.

2.3 Quantifying Quality of Polynomials

  In Section 2.1, we highlighted the 

importance of selecting good polynomial. 

Since selection of polynomial greatly affect 

the number of relations to be found, we 

want to select good polynomial in order to 

expect good performance in sieving. Hence 

quantifying quality of found polynomials is 

needed. In this subsection, we present 

three measurements of quality, namely, 

lognorm, -value, and Murphy E. Lognorm 

and -value relates to size and root 

property respectively, and Murphy E score 

is combination of size and root properties. 

  Recall that aim of sieving stage is to 

collect many relations   such that 

 is smooth over chosen basis of 

primes where  is root of . Generally, 

chosen basis consist of small primes and 

hence small value of norm of  is more 

likely to be factored by such basis. Thus, 

we calculate ‘lognorm’ of polynomial. 

Lognorm is logarithmic average of 

polynomial values across sieving region, 

and it is computed as below[4]. 















         .
  

  In above equation,  refers to skewness 

of sieving region, calculated by ratio of  

[4]. Hence small lognorm means size of 

polynomial is small so that it is more 

likely to be smooth over our chosen basis 

of primes. Thus we are searching for 

polynomial with smaller lognorm as 

possible. Since  is linear, we may 

assume size of  does not vary much 

across sieving region than . Therefore, 

in practice we only focus on lognorm of 

.

  If a polynomial  has many roots 

modulo small prime powers, then we can 
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expect that polynomial values to behave 

more smoothly than random integers about 

the same size. We define expected 

-valuation of  as , where value of  

 is exponent of the largest power of 

prime  dividing  in set of integers , 

and  ∞. We use same notation for 

polynomials to let  refer to expected 

-valuation of  in set .

  Murphy defined  function to 

compare cumulated expected -valuation of 

polynomial values to random integers of 

similar size[4]. Hence,  can be 

considered as logarithmic benefit of using 

polynomial values compared to using 

random integers. We call  as -value 

of polynomial and is defined as below.

  
≤ 
 



 
       

≤ 


 


.

 

  In above equation,  refers to number 

of simple or multiple root of  modulo 

 for ≤  . Combining  and  we 

can approximate number of sieving reports 

as equation below[4,11].



 




  

         
    .

Above measurement is called ‘Murphy E’ 

of polynomials. Since collecting as many 

relation as possible is goal in sieving 

stage, larger Murphy E implies that it is 

more likely to have large number of 

sieving reports in sieving stage. Hence we 

focus on selecting   with larger 

Murphy E value.

III. Polynomial Optimization  

  Through polynomial generation described 

in Section 2.2, we can obtain polynomial 

whose size of first three leading 

coefficients are small. We namely call this 

output  of polynomial generation stage 

as ‘raw polynomial.’ However to have 

better performance in sieving stage, 

optimization of raw polynomial is 

necessary. 

  In this section, two optimization stages 

for better lognorm and Murphy E, are 

described. In Section 3.1, size optimization 

for smaller lognorm is described. In 

Section 3.2, root optimization for larger 

Murphy E is described. Polynomial 

optimization takes 90% of total time of 

polynomial generation stage, and root 

optimization for better Murphy E values 

takes 90% of total time in polynomial 

optimization.

3.1 Size Optimization

  The goal of size optimization is to obtain 

polynomial  with smaller lognorm. 

Note that for  





, size of first 

three leading coefficient  , and  

are controlled during polynomial 

generation. However other coefficients are 

left uncontrolled. Thus size optimization 

focuses on controlling  through 

translation and other coefficients through 

rotation.

  We call computing  and  

as translation. To reduce size of  

effectively, right choice of  is needed. Let 

 




 
 






. We want 

 to be small after translation. Note 
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Algorithm 1

Input : Polynomial pair  





, 

          

         Integers 

Output : polynomial pair   of 

smaller lognorm.

1.       

2. while minimum is found or loop limit 

is reached do

  2.1  ′   ±,  ′   ±
  2,2 if either   ′     then

    2.2.1   ′    ′   
  2.3 else

    2.3.1  ⌈⌉
  2.4  ′   ±
  2.5 if either   ′     then

    2.5.1   ′   
  2.6 else

    2.6.1  ⌈⌉
3. return  

that    

  

and consider  as function of . Then 

we may write  as    

 

 . Let  be 

nearest integer of  where   . Then 

translating  by , we can expect to 

have small . Since degree of  is 3, 

there are at most 3 values of  for 

translation. We calculate  for each 

 and check its lognorm. If lognorm of 

 is smaller than , we replace 

 by . If not,  is left 

unchanged and we continue to next 

optimization stage. 

  After translation, we rotate  and 

obtain   to reduce 

size of last three coefficients. As stated 

above, we use quadratic rotation in order 

to preserve the size properties of 

translated polynomial. Hence after each 

rotation, lognorm is calculated to check 

polynomial’s size property. If lognorm of 

rotated polynomial is larger than original, 

 remain unchanged and move to root 

optimization stage. 

  As a summary, total procedure of size 

optimization is described in Algorithm 

1[4]. Note that    indicates lognorm of 

.

3.2 Root Optimization

  In order to have good root property in 

terms of -values, root optimization is 

performed after adjusting polynomial size 

through size optimization. Good root 

property roughly requires polynomial to 

have many roots modulo small prime and 

prime powers. Total outline of root 

optimization procedure is as follows. We 

rotate   and check root property of 

  . That is, we record roots 

modulo small prime and prime powers of 

  . After rotation has 

finished for all possible  we replace 

  to one of    having 

highest Murphy E values among all 

others. We consider quadratic rotation in 

order to preserve size property obtained by 

size optimization. Thus  can be 

written as      , and we 

search for    such that rotated 

polynomial       has 

good root properties. Since linear rotation 

is faster than quadratic rotation, we first 

search for , sets     

and find   such that 

      has good root 

property by linear rotation. Intuitive 
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approach for root optimization is to check 

-value of   for all possible  . 

However, since bound of   are huge, 

this is time consuming process. Therefore, 

Murphy uses sieve-like procedure to find 

polynomial with good root properties[11]. 

Idea is that when  is root of 

 ≡ 

,  

 
≡

 
  so that  is also root of 




 
 ≡  for  ∈. 

  Let  be bound for small primes and 

 be bound for  and  respectively. 

Algorithm 2 describes Murphy’s root sieve 

which is used as base method for 

CADO-NFS’s root optimization[4].

Algorithm 2

Input : Polynomial pair  , 

         Integers 

Output : array of approximated -values 

of dimension ×

1. For ≤   do

  1.1 For  where  ≤  do

    1.1.1 For ∈   do

      1.1.1.1 For ∈   do

        1.1.1.1.1 

     compute  in ≡ 


        1.1.1.1.2 

     update    by sieving

 

3.3 Application in CADO-NFS

  In Section 3.2, Algorithm 2 works for 

small bounds . However, for 

polynomial of degree greater than 6, 

permissible  bounds are large. Hence 

CADO-NFS uses modification of Algorithm 

2 for faster root sieve[4]. The core idea is 

that if  is simple root of ≡, 

then -valuation can be easily estimated 

so that there is no need to count the 

lifted roots. We determine simplicity of 

roots by using Hensel’s lemma. We call 

root  is simple root modulo  if 

 ′ ≠ and multiple root modulo  

if  ′ ≡  .
  Recall that if  is a simple root of 

rotated polynomial 
 for ≥   

then  is also simple root for  




 
. Since the contribution of 

the root  to  is 
 , we can 

update the score for all rotated 

polynomials of the form  in 

sieve.

  If  is a multiple root of  and 

 ≡ 
 then  can lifted to  

number of roots modulo  such that

   
 for all integer ∈. 

Additionally, the lifted roots  are also 

multiple since  ′ ≡. Whereas if 

 ≠ 
 ,  cannot be lifted to a 

root modulo . Note that in order for  

to be multiple root modulo  for some 

rotated polynomial , it should 

satisfy equation ≡ 

and  ′  ′ ≡  . 
Since ≡  , we can 

obtain following equation.

≡ ′  ′ .  (1)

  Hence if  is root of  modulo  and if

′  ′       (2)

is divisible by , then  is multiple root of 

 modulo . If  is multiple root of 

, lifting is needed for counting 

the lifted roots.

  CADO-NFS divides root optimization 

into two stages. In the first stage, it 
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Algorithm 3

Input : Polynomial pair  , 

         Integers 

Output : an array of murphy E of 

dimension ×

1. For ≤   do

  1.1. For ∈   do

    1.1.1 compute  such that 

     ≡  ′  ′ 
  1.2. For ∈  do

    1.2.1. compute  such that

        ≡ 

    1.2.2. if ≠

       1.2.2.1 then update      

              in sieving

    1.2.3 else

       1.2.3. 1ift to count multiple roots  

           of  
 such that    

            ≡ ,  ≤  ,   

            ≤   and then sieve;

searches for pair  


  such 

that   has many roots modulo prime 

powers for first  smallest primes. In 

second stage, it applies root sieve to 

  for larger prime powers up to some 

bound .

  Naive way for selecting  for given 

 in first stage is to generate matrix of 

pairs of  with size 








and chose 

one  that best generates polynomial 

with good root property. This approach is 

possible only if size of matrix is small. In 

CADO-NFS,  individual polynomials 

   ≤ ≤   is founded for each 

prime  that has many roots modulo 

small 
. Then by Chinese Remainder 

Theorem(CRT) we calculate 

 


  to obtain combined 

polynomial   . Note that  

 
 has same number of roots as 

 
 for ≤ ≤  . Since we 

selected   such that  
 to 

have many roots, combined polynomial 

   is also likely to have many roots 

modulo small prime powers of 
  

.

  Second stage of root sieve is analogous 

to first stage except for the fact that it 

uses larger primes. Let 





 and 

  be fixed as in first stage. Recall 

that we used sub-lattice defined by  

in first stage. In second stage, we do root 

sieve for larger prime powers on 

sub-lattice defined by   . 

  As a summary, modification of Algorithm 

2 for faster root sieve is described in 

Algorithm 3[4].

IV. Proposed Method

  In this Section, we proposed our 

modification for faster root sieve. We 

implemented precomputation table to 

reduce the amount of redundant 

calculation. We also modified searching 

procedure at beginning of second stage of 

root sieve and reduced number of 

sub-lattice for faster root sieve. 

4.1 Table Implementation

  Since root optimization in CADO-NFS 

has redundant calculation of values, one 

way to optimize CADO-NFS’s root 

optimization procedure is to reduce the 

number of such calculation. Note that for 

each prime , and for each ≤    and 

for each ≤   , equation (2) is 
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CADO-NFS Table

Total number 

of calculation
110,299,200 11,940

Total number 

of division
110,299,200 11,940

Table 1. Comparison of calculation of  

  ′ ′  ′ 
calculated  in order to determine whether 

root is simple or not. Note that when 

  , equation (2) is calculated for 

    . But when   , equation (2) 

is again calculated for    . Hence 

 for ≤    is calculated repeatedly 

for some value. 

  Thus instead of calculating equation (2) 

for each  and , we precompute 

  ′ ′  ′       (3)

and record this value along with   . In 

this way, we can look up for value in 

table when needed instead of calculating 

every time. Note that since prime  is 

smaller than 199 in practice, we can make 

size of each entry of precomputation table 

to be 8 bits.

  When generating precomputation table, 

order of computation for calculating  

is modified. In CADO-NFS, it fixes value 

 and calculates  for ≤   . For 

example, when   , it calculates 

 ×,  × , and so on. Instead, we 

fix value  and calculate . For 

example, when  , we calculate 

 ×,  ×, and so on. By 

modifying the order of calculation, 

multiplication is not needed – when 

calculating   × we add  instead. 

Hence if we precalculate  for 

≤   , we can generate  only 

by addition. Since addition is faster than 

multiplication, we can expect shorter 

computation time.

  Comparison of computation between 

CADO-NFS and table implementation is 

shown as Table 1.

  Number of computation is examined 

based on RSA-768 number with leading 

coefficient of  as 265482057982680[6]. 

Total number of calculation refers to the 

number of multiplication needed for 

calculating equation (2) during root 

optimization period. Since  ′  and

 ′  are precalculated, we only need 

to consider 2 multiplications when 

computing equation (2). Specifically, we 

consider 2 multiplications needed for  

 - one for computing × and 

one for computing ×. Total number 

of division refers to the number of division 

for checking existence of  and 

computation of equation (3) that checks 

whether computed root is simple root or 

multiple root. 

  In summary, total 2 multiplications and 

2 divisions occurs for one round of root 

sieve in root optimization. Since there 

exist average 10,000 rounds of root sieve 

per one pair   of primes, this table 

implementation can lead to significant 

decrease in number of computation.

4.2 Modification of Root Sieve Process

  In first stage of root sieve in 

CADO-NFS, it searches for top 3  values 

and records    along with -values 

in array such that 

    

has good root property for first 10 smallest 

primes. In beginning of second stage of 

root sieve, it extracts    pairs 

recorded in array and rotate  to 
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Fig. 1. Recorded  pair after first stage

Fig. 2. Recorded  pair after first step of 

second stage

generate      . Next 

it tests root property of rotated polynomial 

for first 45 primes and reorder    by 

-value. After this step, it focuses on 

searching good  for larger prime that 

has good root property.  

  However, at beginning of second stage, 

testing root properties with larger primes 

does not change any    of recorded 

pairs. In other words, elements in input 

array is same as output array except for 

recorded order. Fig. 1 and Fig. 2 depicts 

the recorded  pairs in end of first 

stage and after first step of second stage, 

respectively.

  In Fig. 1 and Fig. 2, -axis indicates 

value of  and -axis indicates value of . 

As shown in Fig. 1 and Fig. 2, no extra 

 was recorded to array nor extra  

was deleted in array. This result is 

natural since expected p-valuation 

decreases as prime increases. Hence effect 

on -value of polynomial due to inclusion 

of more primes can be negligible. 

Therefore, it is possible to delete 

beginning of second stage and immediately 

move to step where deep search on  

for larger prime is performed. 

  As a summary, total procedure of 

modification of root optimization algorithm 

is described in Algorithm 4.

Algorithm 4

Input : Polynomial pair  , 

         Integers 

         Array of dimension : 

Output : an array of murphy E of 

dimension ×

1. Precomputation

  1.1 For ≤   do

    1.1.1For ∈   do

       1.1.1.1  For ∈  do

         1.1.1.1.1 Compute 

    ′  ′ 
    1.1.1.1.1 Save  in array 

2. For ≤   do

  2.1. For ∈   do

    2.1.2. For ∈  do

      2.1.2.1. compute  such that

        ≡ 

      2.1.2.2. if  =0

        2.1.2.2.1 update         

           in sieving

      2.1.2.3 else

        2.1.2.3.1 1ift to count multiple roots of

                             
 such that            

                  ≡ ,  ≤  ,       

            ≤   and then sieve;
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CADO-NFS Modified

Total time for 

polynomial 

selection (s)

1185.87 693.44 

Average time 

for polynomial 

selecletion (s)

193.14 115.55 

Best 

Murphy E
× ×

Table 2. Comparison of Average Time on Root 

Optimization. 

CADO-NFS Modified

Ad range
265482057982680~

265482057988680

Number of 

optimization
24 24

Total time for 

polynomial 

selection (s)

20926.44 9238.95

Average time 

for root 

optimization(s)

870.39 383.45

Best 

Murphy E
× ×

Table 3. Comparison of Average Time on Root 

Optimization. 
V. Experimental Result

  Experiments were performed using gcc 

version 4.9.2 with Intel Core i5-4690K 

processor at 3.5GHz with 8GB RAM. We 

used  CADO-NFS 2.1.1 version for size  

optimization.

  Table 2 is the experimental result for 

average time took for 6 number of root  

optimizations. Experiment was done with 

RSA-768 number with 265482057982680 as 

leading coefficient of degree 6 polynomial 

[6]. We used  so that 

 ∈, where  are prime factor 

of leading coefficient of .

  In Table 2, total time for polynomial 

selection refers to time it takes to search 

polynomial for one leading coefficient of 

. This includes polynomial generation 

along with size and root optimization. 

With our selection of input parameters, 

CADO-NFS found 6 collision pairs   

so that 6 number of root optimization  

occurred. Hence average time in Table 2 

refers to average time for one polynomial 

selection. As stated in Table 1, due to our 

modification, we select same polynomial as 

in CADO-NFS with 41.5% decrease in 

total time for polynomial selection.

  Table 3 denotes the experiment results 

for average time took for 24 number of 

root optimizations. Experiment was done 

with RSA-768 number with  of degree 

6. In Table 3, ad range refers to the range 

of leading coefficient of . We used 

.

  As in Table 3, our modified version 

selects same polynomial as in CADO-NFS. 

Furthermore, it optimizes polynomial in 

55.94% decrease in time for root 

optimization. This brought 55.85% 

decrease in total time for polynomial 

selection.

VI. Conclusion

In this paper, we proposed table 

implementation of root optimization in 

CADO-NFS. When generating 

precomputation table, we modified the 

order of computation for faster calculation. 

As a result, we calculated values using 

addition whereas CADO-NFS used 

multiplication to obtain same value. 

Additionally, we reduce size of 

sub-lattice for faster root sieve. By 

experiment, reducing number of sub-lattice 

does not effect the quality of output 

polynomial. In this way, we can generate 

polynomial with Murphy E value same as 

CADO-NFS but in shorter time.
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Note that since Murphy E value greatly 

relates to number of expected relation in 

sieving stage, simply reducing time in 

polynomial selection without considering 

output polynomial’s Murphy E value is 

useless. However, as in Section 5, our 

modified version selects same polynomial 

as in CADO-NFS but in shorter time. 

Thus we expect to search more 

polynomials than CADO-NFS in same 

amount of time and hence have higher 

probability of selecting better polynomial.  
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