
631

Journal of The Korea Institute of Information Security & Cryptology
VOL.26, NO.3, Jun. 2016

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2016.26.3.631

다항식 선택을 위한 효율적인 최적화 기법*

김 수 리,1† 권 희 택,1 이 용 성,1 장 남 수,2 윤 기 순,3 김 창 한,4‡ 박 영 호,2 홍 석 희1

1
고려대학교 정보보호연구원,

2
세종사이버대학교,

3
엔에스에이치씨,

4
세명대학교

Efficient Optimization Method for Polynomial Selection*

Suhri Kim,1† Heetaek Kwon,1 Yongseong Lee,1 Nam Su Chang,2 Kisoon Yoon,3

Chang Han Kim,
4‡

 Young-Ho Park,
2
 Seokhie Hong

1

1Center for Information Security Technologies(CIST), Korea University,
2Sejong Cyber University, 3NSHC, 4Semyung University

요 약

현재까지 알려진 가장 효율적인 인수분해 방법은 General Number Field Sieve (GNFS)를 이용하는 방법이다.

CADO-NFS는 GNFS를 기반으로 구현된 공개된 소프트웨어로 RSA-704의 인수분해에 사용된 도구이다.

CADO-NFS에서 다항식 선택은 크게 다항식을 생성하는 과정과 이를 최적화하는 과정으로 나누어져 있다. 그러나

CADO-NFS에서 다항식의 최적화 과정은 전체 다항식 선택 소요 시간 중 약 90%를 차지할 정도로 큰 부하를 주고

있다. 본 논문에서는 사전 연산 테이블을 이용하여 다항식 최적화 과정의 부하를 줄이는 방안을 제안한다. 제안하는 방

법은 기존 CADO-NFS의 다항식과 같은 다항식을 선택하지만, 다항식 선택에 걸리는 시간은 약 40% 감소한다.

ABSTRACT

Currently, General Number Field Sieve(GNFS) is known as the most efficient way for factoring large numbers. CADO-NFS

is an open software based on GNFS, that was used to factor RSA-704. Polynomial selection in CADO-NFS can be divided into

two stages – polynomial selection, and optimization of selected polynomial. However, optimization of selected polynomial in

CADO-NFS is an immense procedure which takes 90% of time in total polynomial selection. In this paper, we introduce

modification of optimization stage in CADO-NFS. We implemented precomputation table and modified optimization algorithm to

reduce redundant calculation for faster optimization. As a result, we select same polynomial as CADO-NFS, with approximately

40% decrease in time.

Keywords: GNFS, Polynomial Selection, Root optimization

I. Introduction*

RSA cryptosystem is one of the most

widely used public key cryptosystem for

Received(05. 02. 2016), Modified(06. 01. 2016),

Accepted(06. 02. 2016)

* 이 논문은 2014년도 정부(미래창조과학부)의 재원으로 한국

연구재단-차세대 정보컴퓨팅기술개발사업의 지원을 받아 수

행된 연구입니다(No. NRF-2014M3C4A7030649)

†주저자, suhrikim@gmail.com

‡교신저자, chkim@semyung.ac.kr(Corresponding author)

providing privacy and ensuring

authenticity of digital data. The security

of RSA cryptosystem is based on hardness

of factoring large numbers. In RSA

cryptosystem, public modulus  is chosen

as product of two distinct primes   of

same size[1]. Let   be two integers

satisfying    where

  . The pair   is

called public key and  is called private

632 다항식 선택을 위한 효율적인 최적화 기법

key. Note that by factoring  to

obtain  , it is easy to find private key.

Hence integer factorization is one of main

topics for research.

General Number Field Sieve (GNFS) is

currently best known algorithm for

factoring large numbers over 110 digits[9].

Factoring based on GNFS is recently

performed by Kleinjung et al. in 2009 for

RSA-768[6], and also by Bai et al. in 2012

for RSA-704[5].

Implementation of GNFS includes

GGNFS, Msieve, and CADO-NFS. GGNFS

is best optimized for factoring up to 160

digit integers and Msieve is best optimized

for factoring up to 130 digit integers.

Meanwhile CADO-NFS was used to factor

RSA-704 (212 digit) so that it is

reasonable to consider CADO-NFS for

factoring integers over 300 digits[9].

 CADO-NFS selects polynomial using

Kleinjung’s second algorithm and optimizes

selected polynomial in two perspective for

better performance in sieving stage[2].

Since optimization of selected polynomial

takes roughly 90% of total polynomial

selection stage, modification is needed for

faster polynomial selection. We conclude

that redundant calculation of values

delays optimization time even more. Hence

we implemented precomputation table and

modified root optimization procedure for

faster selection. In this way, we can

generate polynomial with same Murphy E

value as CADO-NFS in shorter time.

 This paper is organized as follows : In

Section 2, we cover the concept of GNFS

and describe properties that good

polynomial should have. In Section 3, we

briefly describe optimization of

polynomials and focus on its

implementation in CADO-NFS. In section

4, we present our modification of root

optimization process. Following

experimental result for our modification is

presented in Section 5. Finally, we

conclude our result in Section 6.

II. Background

 In this Section, we briefly describe

modern factoring algorithm, GNFS. Next,

we introduce classical method for

polynomial selection in GNFS. Lastly, two

measurement that quantifies polynomial’s

qualities are presented.

2.1 General Number Field Sieve

 Most of modern factoring algorithms are

based on ‘Difference of squares.’ For  

where   are two distinct primes,

‘Difference of squares’ focuses on finding

two random integers   such that

≠  and  ≡ . Then by

computing   and  , we

can obtain non-trivial factor of  with

high probability. This idea is extended to

Quadratic Sieve(QS) and later developed

into GNFS.

 Instead of searching for random integers

as in ‘Difference of squares,’ GNFS

searches irreducible monic polynomial 

of degree greater than 1 and monic linear

polynomial  such that  and 

have common root modulo [7,8].

 Let  and  be roots of   not in

, respectively, and consider rings ,

. Goal in GNFS is to find   pairs

such that  and  are smooth

over chosen basis of primes. We say that

an element is smooth if all of its factors

are member of our chosen basis of

primes.

 We collect   pairs where

  for ∈ and

  for ∈. Consider

정보보호학회논문지 (2016. 6) 633

homomorphisms from ring  and  to

 that maps  and  to . Then there

exist  ∈ such that  are mapped

to   respectively. Hence  ≡ is

again obtained and non-trivial factors of 

can be found with high probability.

 Generally, GNFS is divided into four

stages – polynomial selection, sieving,

linear algebra, square roots – but we

focus on polynomial selection stage of

GNFS. Namely, polynomial selection where

we select  and . This is because

that sieving takes over 90%, 80% of total

time for factoring 512 bit, 768 bit

numbers, respectively, and choice of

polynomial dramatically affect time to

complete sieving. In next Section, we

briefly describe method for polynomial

selection.

2.2 Classical Polynomial Selection

 Classic way to generate polynomial is

using base- method[11]. The base-

method expresses number  to be factored

as 
 , where

≤ 


 for each , and generates two

monic polynomials  of degree  and

   of degree 1 with  as

common root between  and . To

reduce size of coefficient of , this

method is modified to select non-monic

polynomial  





 and  

 such that 







 [3].

We choose  to be close to 
[4]. If

 is not small enough, try another .

Otherwise we optimize the generated

polynomial pair.

2.3 Quantifying Quality of Polynomials

 In Section 2.1, we highlighted the

importance of selecting good polynomial.

Since selection of polynomial greatly affect

the number of relations to be found, we

want to select good polynomial in order to

expect good performance in sieving. Hence

quantifying quality of found polynomials is

needed. In this subsection, we present

three measurements of quality, namely,

lognorm, -value, and Murphy E. Lognorm

and -value relates to size and root

property respectively, and Murphy E score

is combination of size and root properties.

 Recall that aim of sieving stage is to

collect many relations   such that

 is smooth over chosen basis of

primes where  is root of . Generally,

chosen basis consist of small primes and

hence small value of norm of  is more

likely to be factored by such basis. Thus,

we calculate ‘lognorm’ of polynomial.

Lognorm is logarithmic average of

polynomial values across sieving region,

and it is computed as below[4].















         .

 In above equation,  refers to skewness

of sieving region, calculated by ratio of  

[4]. Hence small lognorm means size of

polynomial is small so that it is more

likely to be smooth over our chosen basis

of primes. Thus we are searching for

polynomial with smaller lognorm as

possible. Since  is linear, we may

assume size of  does not vary much

across sieving region than . Therefore,

in practice we only focus on lognorm of

.

 If a polynomial  has many roots

modulo small prime powers, then we can

634 다항식 선택을 위한 효율적인 최적화 기법

expect that polynomial values to behave

more smoothly than random integers about

the same size. We define expected 

-valuation of  as , where value of

 is exponent of the largest power of

prime  dividing  in set of integers ,

and  ∞. We use same notation for

polynomials to let  refer to expected 

-valuation of  in set .

 Murphy defined  function to

compare cumulated expected -valuation of

polynomial values to random integers of

similar size[4]. Hence,  can be

considered as logarithmic benefit of using

polynomial values compared to using

random integers. We call  as -value

of polynomial and is defined as below.

  
≤ 
 



 
  

≤ 


 


.

 In above equation,  refers to number

of simple or multiple root of  modulo

 for ≤  . Combining  and  we

can approximate number of sieving reports

as equation below[4,11].



 




  

 
    .

Above measurement is called ‘Murphy E’

of polynomials. Since collecting as many

relation as possible is goal in sieving

stage, larger Murphy E implies that it is

more likely to have large number of

sieving reports in sieving stage. Hence we

focus on selecting   with larger

Murphy E value.

III. Polynomial Optimization

 Through polynomial generation described

in Section 2.2, we can obtain polynomial

whose size of first three leading

coefficients are small. We namely call this

output  of polynomial generation stage

as ‘raw polynomial.’ However to have

better performance in sieving stage,

optimization of raw polynomial is

necessary.

 In this section, two optimization stages

for better lognorm and Murphy E, are

described. In Section 3.1, size optimization

for smaller lognorm is described. In

Section 3.2, root optimization for larger

Murphy E is described. Polynomial

optimization takes 90% of total time of

polynomial generation stage, and root

optimization for better Murphy E values

takes 90% of total time in polynomial

optimization.

3.1 Size Optimization

 The goal of size optimization is to obtain

polynomial  with smaller lognorm.

Note that for  





, size of first

three leading coefficient  , and 

are controlled during polynomial

generation. However other coefficients are

left uncontrolled. Thus size optimization

focuses on controlling  through

translation and other coefficients through

rotation.

 We call computing  and 

as translation. To reduce size of 

effectively, right choice of  is needed. Let

 




 
 






. We want

 to be small after translation. Note

정보보호학회논문지 (2016. 6) 635

Algorithm 1

Input : Polynomial pair  





,

  

 Integers 

Output : polynomial pair   of

smaller lognorm.

1.       

2. while minimum is found or loop limit

is reached do

 2.1  ′   ±,  ′   ±
 2,2 if either   ′     then

 2.2.1   ′    ′   
 2.3 else

 2.3.1  ⌈⌉
 2.4  ′   ±
 2.5 if either   ′     then

 2.5.1   ′   
 2.6 else

 2.6.1  ⌈⌉
3. return  

that    

 

and consider  as function of . Then

we may write  as    

 

 . Let  be

nearest integer of  where   . Then

translating  by , we can expect to

have small . Since degree of  is 3,

there are at most 3 values of  for

translation. We calculate  for each

 and check its lognorm. If lognorm of

 is smaller than , we replace

 by . If not,  is left

unchanged and we continue to next

optimization stage.

 After translation, we rotate  and

obtain   to reduce

size of last three coefficients. As stated

above, we use quadratic rotation in order

to preserve the size properties of

translated polynomial. Hence after each

rotation, lognorm is calculated to check

polynomial’s size property. If lognorm of

rotated polynomial is larger than original,

 remain unchanged and move to root

optimization stage.

 As a summary, total procedure of size

optimization is described in Algorithm

1[4]. Note that   indicates lognorm of

.

3.2 Root Optimization

 In order to have good root property in

terms of -values, root optimization is

performed after adjusting polynomial size

through size optimization. Good root

property roughly requires polynomial to

have many roots modulo small prime and

prime powers. Total outline of root

optimization procedure is as follows. We

rotate  and check root property of

  . That is, we record roots

modulo small prime and prime powers of

  . After rotation has

finished for all possible  we replace

 to one of   having

highest Murphy E values among all

others. We consider quadratic rotation in

order to preserve size property obtained by

size optimization. Thus  can be

written as      , and we

search for    such that rotated

polynomial      has

good root properties. Since linear rotation

is faster than quadratic rotation, we first

search for , sets   

and find   such that

     has good root

property by linear rotation. Intuitive

636 다항식 선택을 위한 효율적인 최적화 기법

approach for root optimization is to check

-value of  for all possible  .

However, since bound of   are huge,

this is time consuming process. Therefore,

Murphy uses sieve-like procedure to find

polynomial with good root properties[11].

Idea is that when  is root of

 ≡ 

, 

 
≡

 
 so that  is also root of




 
 ≡ for  ∈.

 Let  be bound for small primes and

 be bound for  and  respectively.

Algorithm 2 describes Murphy’s root sieve

which is used as base method for

CADO-NFS’s root optimization[4].

Algorithm 2

Input : Polynomial pair  ,

 Integers 

Output : array of approximated -values

of dimension ×

1. For ≤  do

 1.1 For  where  ≤  do

 1.1.1 For ∈   do

 1.1.1.1 For ∈   do

 1.1.1.1.1

 compute  in ≡ 


 1.1.1.1.2

 update   by sieving

3.3 Application in CADO-NFS

 In Section 3.2, Algorithm 2 works for

small bounds . However, for

polynomial of degree greater than 6,

permissible  bounds are large. Hence

CADO-NFS uses modification of Algorithm

2 for faster root sieve[4]. The core idea is

that if  is simple root of ≡,

then -valuation can be easily estimated

so that there is no need to count the

lifted roots. We determine simplicity of

roots by using Hensel’s lemma. We call

root  is simple root modulo  if

 ′ ≠ and multiple root modulo 

if  ′ ≡  .
 Recall that if  is a simple root of

rotated polynomial 
 for ≥ 

then  is also simple root for




 
. Since the contribution of

the root  to  is 
 , we can

update the score for all rotated

polynomials of the form  in

sieve.

 If  is a multiple root of  and

 ≡ 
 then  can lifted to 

number of roots modulo  such that

   
 for all integer ∈.

Additionally, the lifted roots  are also

multiple since  ′ ≡. Whereas if

 ≠ 
 ,  cannot be lifted to a

root modulo . Note that in order for 

to be multiple root modulo  for some

rotated polynomial , it should

satisfy equation ≡

and  ′  ′ ≡  .
Since ≡  , we can

obtain following equation.

≡ ′  ′ . (1)

 Hence if  is root of  modulo  and if

′  ′  (2)

is divisible by , then  is multiple root of

 modulo . If  is multiple root of

, lifting is needed for counting

the lifted roots.

 CADO-NFS divides root optimization

into two stages. In the first stage, it

정보보호학회논문지 (2016. 6) 637

Algorithm 3

Input : Polynomial pair  ,

 Integers 

Output : an array of murphy E of

dimension ×

1. For ≤  do

 1.1. For ∈   do

 1.1.1 compute  such that

 ≡  ′  ′ 
 1.2. For ∈  do

 1.2.1. compute  such that

 ≡ 

 1.2.2. if ≠

 1.2.2.1 then update  

 in sieving

 1.2.3 else

 1.2.3. 1ift to count multiple roots

 of  
 such that

 ≡ ,  ≤  ,

 ≤  and then sieve;

searches for pair  


 such

that   has many roots modulo prime

powers for first  smallest primes. In

second stage, it applies root sieve to

  for larger prime powers up to some

bound .

 Naive way for selecting  for given

 in first stage is to generate matrix of

pairs of  with size 








and chose

one  that best generates polynomial

with good root property. This approach is

possible only if size of matrix is small. In

CADO-NFS,  individual polynomials

   ≤ ≤  is founded for each

prime  that has many roots modulo

small 
. Then by Chinese Remainder

Theorem(CRT) we calculate

 


 to obtain combined

polynomial   . Note that

 
 has same number of roots as

 
 for ≤ ≤  . Since we

selected   such that  
 to

have many roots, combined polynomial

  is also likely to have many roots

modulo small prime powers of 
  

.

 Second stage of root sieve is analogous

to first stage except for the fact that it

uses larger primes. Let 





 and

  be fixed as in first stage. Recall

that we used sub-lattice defined by 

in first stage. In second stage, we do root

sieve for larger prime powers on

sub-lattice defined by   .

 As a summary, modification of Algorithm

2 for faster root sieve is described in

Algorithm 3[4].

IV. Proposed Method

 In this Section, we proposed our

modification for faster root sieve. We

implemented precomputation table to

reduce the amount of redundant

calculation. We also modified searching

procedure at beginning of second stage of

root sieve and reduced number of

sub-lattice for faster root sieve.

4.1 Table Implementation

 Since root optimization in CADO-NFS

has redundant calculation of values, one

way to optimize CADO-NFS’s root

optimization procedure is to reduce the

number of such calculation. Note that for

each prime , and for each ≤   and

for each ≤   , equation (2) is

638 다항식 선택을 위한 효율적인 최적화 기법

CADO-NFS Table

Total number

of calculation
110,299,200 11,940

Total number

of division
110,299,200 11,940

Table 1. Comparison of calculation of

  ′ ′  ′ 
calculated in order to determine whether

root is simple or not. Note that when

  , equation (2) is calculated for

    . But when   , equation (2)

is again calculated for    . Hence

 for ≤   is calculated repeatedly

for some value.

 Thus instead of calculating equation (2)

for each  and , we precompute

  ′ ′  ′  (3)

and record this value along with   . In

this way, we can look up for value in

table when needed instead of calculating

every time. Note that since prime  is

smaller than 199 in practice, we can make

size of each entry of precomputation table

to be 8 bits.

 When generating precomputation table,

order of computation for calculating 

is modified. In CADO-NFS, it fixes value

 and calculates  for ≤   . For

example, when   , it calculates

 ×,  × , and so on. Instead, we

fix value  and calculate . For

example, when  , we calculate

 ×,  ×, and so on. By

modifying the order of calculation,

multiplication is not needed – when

calculating  × we add  instead.

Hence if we precalculate  for

≤   , we can generate  only

by addition. Since addition is faster than

multiplication, we can expect shorter

computation time.

 Comparison of computation between

CADO-NFS and table implementation is

shown as Table 1.

 Number of computation is examined

based on RSA-768 number with leading

coefficient of  as 265482057982680[6].

Total number of calculation refers to the

number of multiplication needed for

calculating equation (2) during root

optimization period. Since  ′  and

 ′  are precalculated, we only need

to consider 2 multiplications when

computing equation (2). Specifically, we

consider 2 multiplications needed for

 - one for computing × and

one for computing ×. Total number

of division refers to the number of division

for checking existence of  and

computation of equation (3) that checks

whether computed root is simple root or

multiple root.

 In summary, total 2 multiplications and

2 divisions occurs for one round of root

sieve in root optimization. Since there

exist average 10,000 rounds of root sieve

per one pair   of primes, this table

implementation can lead to significant

decrease in number of computation.

4.2 Modification of Root Sieve Process

 In first stage of root sieve in

CADO-NFS, it searches for top 3  values

and records    along with -values

in array such that

    

has good root property for first 10 smallest

primes. In beginning of second stage of

root sieve, it extracts    pairs

recorded in array and rotate  to

정보보호학회논문지 (2016. 6) 639

Fig. 1. Recorded  pair after first stage

Fig. 2. Recorded  pair after first step of

second stage

generate      . Next

it tests root property of rotated polynomial

for first 45 primes and reorder    by

-value. After this step, it focuses on

searching good  for larger prime that

has good root property.

 However, at beginning of second stage,

testing root properties with larger primes

does not change any    of recorded

pairs. In other words, elements in input

array is same as output array except for

recorded order. Fig. 1 and Fig. 2 depicts

the recorded  pairs in end of first

stage and after first step of second stage,

respectively.

 In Fig. 1 and Fig. 2, -axis indicates

value of  and -axis indicates value of .

As shown in Fig. 1 and Fig. 2, no extra

 was recorded to array nor extra 

was deleted in array. This result is

natural since expected p-valuation

decreases as prime increases. Hence effect

on -value of polynomial due to inclusion

of more primes can be negligible.

Therefore, it is possible to delete

beginning of second stage and immediately

move to step where deep search on 

for larger prime is performed.

 As a summary, total procedure of

modification of root optimization algorithm

is described in Algorithm 4.

Algorithm 4

Input : Polynomial pair  ,

 Integers 

 Array of dimension :

Output : an array of murphy E of

dimension ×

1. Precomputation

 1.1 For ≤  do

 1.1.1For ∈   do

 1.1.1.1 For ∈  do

 1.1.1.1.1 Compute

   ′  ′ 
 1.1.1.1.1 Save  in array 

2. For ≤  do

 2.1. For ∈   do

 2.1.2. For ∈  do

 2.1.2.1. compute  such that

 ≡ 

 2.1.2.2. if  =0

 2.1.2.2.1 update  

 in sieving

 2.1.2.3 else

 2.1.2.3.1 1ift to count multiple roots of

  
 such that

 ≡ ,  ≤  ,

 ≤  and then sieve;

640 다항식 선택을 위한 효율적인 최적화 기법

CADO-NFS Modified

Total time for

polynomial

selection (s)

1185.87 693.44

Average time

for polynomial

selecletion (s)

193.14 115.55

Best

Murphy E
× ×

Table 2. Comparison of Average Time on Root

Optimization.

CADO-NFS Modified

Ad range
265482057982680~

265482057988680

Number of

optimization
24 24

Total time for

polynomial

selection (s)

20926.44 9238.95

Average time

for root

optimization(s)

870.39 383.45

Best

Murphy E
× ×

Table 3. Comparison of Average Time on Root

Optimization.
V. Experimental Result

 Experiments were performed using gcc

version 4.9.2 with Intel Core i5-4690K

processor at 3.5GHz with 8GB RAM. We

used CADO-NFS 2.1.1 version for size

optimization.

 Table 2 is the experimental result for

average time took for 6 number of root

optimizations. Experiment was done with

RSA-768 number with 265482057982680 as

leading coefficient of degree 6 polynomial

[6]. We used  so that

 ∈, where  are prime factor

of leading coefficient of .

 In Table 2, total time for polynomial

selection refers to time it takes to search

polynomial for one leading coefficient of

. This includes polynomial generation

along with size and root optimization.

With our selection of input parameters,

CADO-NFS found 6 collision pairs  

so that 6 number of root optimization

occurred. Hence average time in Table 2

refers to average time for one polynomial

selection. As stated in Table 1, due to our

modification, we select same polynomial as

in CADO-NFS with 41.5% decrease in

total time for polynomial selection.

 Table 3 denotes the experiment results

for average time took for 24 number of

root optimizations. Experiment was done

with RSA-768 number with  of degree

6. In Table 3, ad range refers to the range

of leading coefficient of . We used

.

 As in Table 3, our modified version

selects same polynomial as in CADO-NFS.

Furthermore, it optimizes polynomial in

55.94% decrease in time for root

optimization. This brought 55.85%

decrease in total time for polynomial

selection.

VI. Conclusion

In this paper, we proposed table

implementation of root optimization in

CADO-NFS. When generating

precomputation table, we modified the

order of computation for faster calculation.

As a result, we calculated values using

addition whereas CADO-NFS used

multiplication to obtain same value.

Additionally, we reduce size of

sub-lattice for faster root sieve. By

experiment, reducing number of sub-lattice

does not effect the quality of output

polynomial. In this way, we can generate

polynomial with Murphy E value same as

CADO-NFS but in shorter time.

정보보호학회논문지 (2016. 6) 641

Note that since Murphy E value greatly

relates to number of expected relation in

sieving stage, simply reducing time in

polynomial selection without considering

output polynomial’s Murphy E value is

useless. However, as in Section 5, our

modified version selects same polynomial

as in CADO-NFS but in shorter time.

Thus we expect to search more

polynomials than CADO-NFS in same

amount of time and hence have higher

probability of selecting better polynomial.

References

[1] R. Rivest, A. Shamir, L. Adleman, “A

Method for Obtaining Digital Signature

and Public-Key Cryptosystems,” ACM,

vol.21(2), pp.120-126, 1978.

[2] T. Kleinjung. “Polynomial selection,” In

CADO workshop on integer factorization,

INRIA Nancy, http://cado.gforg-

e.inria.fr/workshop/slides/kleinjung.

pdf. 2008.

[3] T. Kleinjung. “On polynomial selection for

the general number field sieve,”

Mathematics of Computation, pp. 2037–

2047, 2006.

[4] S. Bai “Polynomial Selection for the

Number Field Sieve,” Ph.D. Thesis ,The

Australian National University, 2011.

[5] S. Bai, E. Thom´e, P. Zimmermann.

Factorisation of RSA-704 with

CADO-NFS. Report, http://eprint.iacr

.org/2012/369.pdf.

[6] T. Kleinjung, K. Aoki, J. Franke, A. K.

Lenstra, E. Thom´e, J. W. Bos, P. Gaudry,

A. Kruppa,P. L. Montgomery, D. A.

Osvik, H. J. J. te Riele, A. Timofeev, and

P. Zimmermann. “Factorization of a

768-bit RSA modulus,” CRYPTO ’10,

vol.6223 LNCS, pp 333–350, 2010.

[7] A. K. Lenstra and H. W. Lenstra, Jr.,

editors. “The Development of the Number

Field Sieve,” vol. 1554 of Lecture Notes

in Mathematics. Springer, 1993.

[8] Matthew E. Briggs “An Introduction to

the General Number Field Sieve,” Master

Thesis. Virginia Polytechnic Institute

and State University. April, 1998.

[9] P. Gaudry, A. Kruppa, et al.

“CADO-NFS,” http://cado-nfs.gforg-

e.inria.fr

[10] B. A. Murphy, R. P. Brent, “On Quadratic

Polynomials for the Number Field Sieve,”

CATS’98, pp 199-231, 1998.

[11] B. A. Murphy, “Polynomial Selection for

the Number Field Sieve Integer

Factorization Algorithm,” Ph.D. Thesis,

The Australian National University,

1999.

642 다항식 선택을 위한 효율적인 최적화 기법

<저자소개>

김 수 리 (Suhri Kim) 학생회원

2014년 2월: 고려대학교 수학과 학사

2014년 8월~현재: 고려대학교 정보보호대학원 석사과정

<관심분야> 부채널 공격, 공개키 암호시스템

권 희 택 (Heetaek Kwon) 학생회원

2010년 2월: 고려대학교 수학과 학사

2010년 3월~현재: 고려대학교 정보보호대학원 석박사 통합과정

<관심분야> 정보보호, 공개키 암호시스템

이 용 성 (Yongseong Lee) 학생회원

2015년 3월: 고려대학교 수학과 학사

2015년 3월~현재: 고려대학교 정보보호대학원 석사과정

<관심분야> 정보보호, 대칭키, 공개키 암호시스템

장 남 수 (Nam Su Chang) 정회원

2002년 2월: 서울 시립대학교 수학과 이학사

2004년 8월: 고려대학교 정보보호 대학원 공학석사

2010년 2월: 고려대학교 정보경영공학전문대학원 공학박사

2010년 7월~현재: 세종사이버대학교 정보보호학과 조교수

<관심분야> 암호칩 설계 기술, 부채널 공격, 공개키 암호 알고리즘, 공개키 암호 암호분석

윤 기 순 (Kisoon Yoon) 정회원

1998년 8월: 경희대학교 수학과 이학사

2007년 8월: 고려대학교 정보보호학과 공학석사

2013년 11월: Université de Caen 수학과 이학박사

2013년 11월~현재: 엔에스에이치씨 암호기술팀 팀장

<관심분야> 정수론, 암호학, 정보보호

정보보호학회논문지 (2016. 6) 643

김 창 한 (Chang Han Kim) 종신회원

1985년 2월: 고려대학교 수학과 이학사

1987년 2월: 고려대학교 수학과 이학석사

1992년 2월: 고려대학교 수학과 이학박사

1992년 8월～현재: 세명대학교 정보통신학부 교수

<관심분야> 정수론, 공개키암호, 암호프로토콜

박 영 호 (Young-Ho Park) 종신회원

1990년 2월: 고려대학교 수학과 이학사

1993년 2월: 고려대학교 수학과 이학석사

1997년 2월: 고려대학교 수학과 이학박사

2002년 3월～현재: 세종사이버대학교 정보보호학과 교수

<관심분야> 공개키 암호, 암호 프로토콜, 부채널 공격, 암호안전성평가

홍 석 희 (Seokhie Hong) 종신회원

1995년 2월: 고려대학교 수학과 학사

1997년 2월: 고려대학교 수학과 석사

2001년 8월: 고려대학교 수학과 박사

1999년 8월~2004년 2월: (주) 시큐리티 테크놀로지스 선임연구원

2003년 8월~2004년 2월: 고려대학교 정보보호기술연구센터 선임연구원

2004년 4월~2005년 2월: K.U.Leuven, ESAT/SCD-COSIC 박사후연구원

2005년 3월~2013년 8월: 고려대학교 정보보호대학원 부교수

2013년 9월~현재: 고려대학교 정보보호대학원 정교수

<관심분야> 대칭키·공개키 암호 분석 및 설계, 컴퓨터 포렌식

