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ON NONLINEAR POLYNOMIAL SELECTION

AND GEOMETRIC PROGRESSION (MOD N) FOR

NUMBER FIELD SIEVE

Gook Hwa Cho, Namhun Koo, and Soonhak Kwon

Abstract. The general number field sieve (GNFS) is asymptotically the
fastest known factoring algorithm. One of the most important steps of
GNFS is to select a good polynomial pair. A standard way of polynomial
selection (being used in factoring RSA challenge numbers) is to select a
nonlinear polynomial for algebraic sieving and a linear polynomial for ra-
tional sieving. There is another method called a nonlinear method which
selects two polynomials of the same degree greater than one. In this pa-
per, we generalize Montgomery’s method [12] using geometric progression
(GP) (mod N) to construct a pair of nonlinear polynomials. We also in-
troduce GP of length d + k with 1 ≤ k ≤ d − 1 and show that we can
construct polynomials of degree d having common root (mod N), where
the number of such polynomials and the size of the coefficients can be

precisely determined.

1. Introduction

The number field sieve (NFS) [6, 10] is asymptotically the fastest known fac-
toring algorithm for given composite integer N . One of the most exciting news
on this topic is the factorization of RSA-768 by the collaboration of Kleinjung
and many other researchers [9] using the technique of the general number field
sieve (GNFS). Almost all of the factored RSA numbers with 100 digit size or
more were tackled by using NFS algorithm so far. Recently the polynomial
selection step of NFS is being studied widely since a good polynomial pair
greatly reduces the entire running time of NFS algorithm.

Among several polynomial selection methods for NFS being proposed so far,
the base-m method is one of the most standard ones. Murphy [13] proposed an
improvement of the base-m method by refining the notion of polynomial yield.
Murphy’s method focuses on root property, which is a measurement of the
efficiency of polynomial pair having roots modulo small primes. Kleinjung [8]
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proposed an improvement of Murphy’s method to nonmonic linear polynomials.
Both Murphy’s and Kleinjung’s methods were used on factorization of many
RSA challenge numbers. We call all these polynomial selection methods linear
method since it selects a nonlinear polynomial for algebraic sieving and a linear
polynomial for rational sieving.

A nonlinear method refers the method of choosing two nonlinear polynomials
(of degree ≥ 2) having a common zero (mod N). Several researchers focus on
nonlinear polynomial selection methods. Montgomery [12] showed that one can
find two nonlinear polynomials of degree d and size O(N1/2d) having common
root (mod N) if and only if one can find a geometric progression (GP) (mod
N) of length 2d − 1 and size O(N1−1/d). Montgomery succeeded in finding
such GP (mod N) when d = 2 but the case d ≥ 3 is still unresolved. The
quadratic method (d = 2) is not competitive to linear method when the integer
N is over 120 digits [13]. Prest and Zimmermann [15], and also Williams [17]
proposed other nonlinear polynomial selection methods using GP (mod N) of
length d + 1, however these methods produce polynomials which have larger
coefficients than the optimal bound O(N1/2d) expected from Montgomery’s
method.

In this paper, we propose a polynomial selection method using a GP of
length d + k with 1 ≤ k ≤ d − 1 which generalizes Montgomery’s method of
GP with length 2d − 1 (i.e., k = d − 1). Natural implication of our result is
that one can generate polynomials with different degrees d for all l

2 < d < l
having common root (mod N) from a GP of fixed length l. We also introduce
a method of finding a GP of (d + 1)-term with size O(N1−1/d) and show that
the proposed method has more flexibility than the usual base-m method. GP
with length d+2 and size O(N1−1/d) is difficult to find in general but we show
that such GP can be found under certain conditions. We apply our result to
construct explicit cubic polynomials having common roots (mod N).

The remaining part of this paper is organized as follows. We explain the
existing polynomial selection methods in Section 2. We introduce an extension
of Montgomery’s GP method and explain a generalized polynomial selection
method given GP of arbitrary length in Section 3. We introduce new classes
of GP of length d+ 1 and d+ 2 and give examples of corresponding nonlinear
polynomials in Section 4. Finally we give conclusive remarks in Section 5.

2. Existing polynomial selection methods

2.1. Linear polynomial selection method

2.1.1. Base-m method. Let N1/(d+1) < m ≤ N1/d and let N =
∑d

i=0 aim
i

(0 ≤ ai < m) be the base m-expansion of N . Then

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0, g(x) = x−m

are two polynomials having common root m (mod N). There are other im-
provements to reduce the size of coefficients of f with the property f(m) ≡ 0
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(mod N) being preserved. For example, if ai > m/2, then the substitution

ai ← ai −m and ai+1 ← ai+1 + 1,

makes |ai| < m/2 for every i. For more detail, refer [10, 13].

2.1.2. Murphy’s method. Murphy’s method [13] is an improvement of the base-
m method to generate skewed polynomials having good root property using
rotations and translations. For given polynomial pair (f(x), g(x)) with common
root m (mod N), rotation by r(x) refers another polynomial pair (f(x) +
r(x)g(x), g(x)). Also translation by t refers a polynomial pair (f(x−t), g(x−t))
having common root m+ t (mod N).

The root property measures the smoothness of given polynomial, i.e., it tells
how many roots the polynomial has modulo small primes. To measure the root
property of a polynomial f , one defines

(1) α(f) =
∑

p≤B

(1− qp)
log p

p− 1
,

where B is the given bound and qp is the number of root of f(x) ≡ 0 (mod p).
Sufficiently many zeros of f (mod p) implies that one has negative α(f) with
larger absolute value. Similarly one can also define α value for a bivariate
homogeneous polynomial F (x, y) with f(x) = F (x, 1). In this case, projective
roots p dividing the leading coefficient ad of f should also be considered. That
is, if the leading coefficient of f has many small prime factors, then f may
have a good root property. Therefore one may select m with adm

d ≤ N <
(ad + 1)md with ad having many small prime factors. By using the techniques
of translation and rotation, one may generate skewed polynomials having good
root properties. In Murphy’s method, rotation by linear polynomial r(x) was
used. Rotation by nonlinear polynomials using the Chinese remainder theorem
was proposed in [7].

2.1.3. Kleinjung’s method and improvements. Kleinjung [8] proposed an im-
provement of Murphy’s method to nonmonic linear g. This method first selects
a positive integer ad which has many small prime factors. Next, one chooses
an integer p such that adx

d ≡ N (mod p) is solvable. Now let m be a solution
of adx

d ≡ N (mod p) close to m̃ = (N/ad)
1/d. Then there is an expression

N = adm
d + ad−1m

d−1p+ · · ·+ a1mpd−1 + a0p
d,

with |ad−1| < dad
m−m̃

p + p and |ai| < m + p for i = 0, . . . , d − 2 (see Lemma

2.1 of [8]). Thus

f(x) = adx
d + ad−1x

d−1 + · · ·+ a0, g(x) = px−m

is a polynomial pair having common root p−1m (mod N), where ad−1 and
ad−2 can be bounded in terms of ad, p and m. Considering plenty of optimal
triples (ad, p,m), Kleinjung found polynomial pairs with nonmonic g having
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better yields than that of Murphy’s method. This method was used for the
factorization of RSA-768 [9].

Two methods which improve Kleinjung’s method are recently introduced in
[2, 3]. In [3], Bai et al. focused on fast computation of α value in (1) and
proposed a new method to compute α value of fu,v = f(x) + (ux + v)g(x)
using root property of f and applying Hensel’s Lemma. In [2], Bai et al.
introduced a method to refine rotation and translation procedure. To get a
better rotated polynomial, the authors used the LLL lattice reduction algorithm
[11]. Combined with some resultant technique, they found a better polynomial
pair than the previous proposed methods.

2.2. Nonlinear polynomial selection method

2.2.1. Montgomery’s method. Montgomery [12] proposed a nonlinear method
which produces two polynomials of the same degree d using a small GP (mod
N). We say a sequence {ci} is a GP (mod N) if ci+1 ≡ rci (mod N) for some
fixed ratio r. If there exists a GP (mod N) of length 2d−1 with ci = O(N1−1/d)
written in vector notation as

~c = [c0, c1, . . . , c2d−2],

which is not a linear recurrence of order d − 1 over Q, then by looking at the
two dimensional sublattice of Zd+1 which is orthogonal to d−1 vectors in Zd+1

spanned by

[c0, c1, . . . , cd], [c1, c2, . . . , cd+1], . . . , [cd−2, cd−1, . . . , c2d−2],

one can construct two polynomials f1(x) = adx
d + ad−1x

d−1 + · · · + a0 and
f2(x) = bdx

d + bd−1x
d−1 + · · ·+ b0 of degree d with common root r (mod N),

where r is the geometric ratio of GP ~c and the coefficients of f1 and f2 are of
O(N1/2d).

At this moment, it is still an open problem whether one can find such GP
(mod N) with length 2d − 1 and size ci = O(N1−1/d) for general d. How-
ever, when d = 2, Montgomery presented a GP (mod N) satisfying the above
conditions. That is, letting p be a prime satisfying

(i) p <
√
N, (ii)

(
N

p

)
= 1.

Montgomery finds a solution c1 of x2 ≡ N (mod p) with |c1−
√
N | ≤ p/2, and

thus

(2) [c0, c1, c2] = [p, c1, (c
2
1 −N)/p]

is a desired GP (mod N) with ratio r ≡ p−1c1 (mod N). It seems difficult to
extend the idea of Montgomery to general d ≥ 3. A positive answer for the case
d = 3 would imply that we may replace the sieving polynomial pair (f(x), l(x))
with linear l(x) and deg f = 5 or 6 by two cubic polynomials. For details, refer
[13].
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2.2.2. The method of Prest and Zimmermann. According to Montgomery’s
idea, we need a GP (mod N) with length 2d− 1 and size O(N1−1/d) to gener-
ate two polynomials of degree d with common root (mod N) and coefficients of
O(N1/2d). In the case that we have only (d+ 1)-term of GP, we may still gen-
erate two polynomials of degree d with common root (mod N). Williams [17]
showed that a GP of length 4 (i.e., d = 3) of size O(N2/3) gives two cubic poly-
nomials having common root (mod N) with coefficients O(N2/9). Therefore
the resultant of two polynomials is O(N4/3), while O(N) is the optimal resul-
tant size expected from two polynomials with coefficients O(N1/2d). Prest and
Zimmermann [15] considered the case of arbitrary degree to generate skewed
polynomials. Choosing a GP of the form [1,m, . . . ,md−1,md−N ] with m near
N1/d, and applying LLL algorithm [11] on the lattice spanned by the column
vectors of the following matrix




m · · · md−1 md −N
s · · · 0 0
...

. . .
...

...
0 · · · sd−1 0
0 · · · 0 sd




,

where s is the skewness parameter, they get two short vectors of the form



−a0
a1s
...

ads
d


 .

Thus the polynomials a0+ · · ·+adx
d have m as a common root (mod N). They

showed that, by selecting s = O(N
2

d(d2−d+2) ), the skewed polynomials have

medium coefficients of size O(N
d
2
−2d+2

d3−d2+2d ) and resultant of size O(N
2(d2−2d+2)

d2−d+2 ).
When d = 3, this method gives two cubic polynomials whose resultant is of
O(N5/4) and medium coefficients of O(N5/24).

2.2.3. Coxon’s analysis of Montgomery’s method. In [5], Coxon focused on two
subjects from Montgomery’s method. Coxon considered the idea of finding a
GP from a given NFS polynomial pair. For a given polynomial pair f1, f2 with
2 ≤ deg f2 ≤ t ≤ deg f1, define the matrix of size (deg f1+t−2)×(deg f1+t−1)
by

St(f1, f2) =




coeff(xt−2f1)
...

coeff(f1)
coeff(xdeg f1−2f2)

...
coeff(f2)




,
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where coeff

(
deg f1+t−2∑

i=0

aix
i

)
= (adeg f1+t−2, . . . , a0).

By defining Mt,i be (−1)i+1 times the determinant of the submatrix of
St(f1, f2) obtained by removing its ith column, and letting

ct(f1, f2) = (Mt,1(f1, f2), . . . ,Mt,deg f1+t−1(f1, f2)),

Coxon showed that ct(f1, f2) is a GP which can be used to find NFS polynomial
pair for each deg f2 ≤ t ≤ deg f1. Also, for a given polynomial pair f1 and f2,
Coxon obtained an upper bound and a lower bound for the skewed 2-norm of
f1 and f2. For detail results and proofs, refer Section 5 of [5].

3. Polynomial selections from GP of length d + k

To find a pair of nonlinear sieving polynomials, Montgomery [12] considers
GP (mod N) ~c = [c0, c1, . . . , c2d−2] with length 2d−1 and size ci = O(N1−1/d).
On the other hand, Prest and Zimmermann [15] consider ~c = [c0, c1, . . . , cd]
with length d+ 1 and size ci = O(N1−1/d). Finding GP (mod N) with length
d+1 and size ci = O(N1−1/d) is relatively easy because, letting c0 = ⌊N1/d⌋+j
for small j and ci ≡ ci0 (mod N), one gets ci = O(N1−1/d). However it is not
clear how one can find a GP (mod N) with bounded size for general length
d+ k

~c = [c0, c1, . . . , cd+k−1].

The most desirable case is k = d− 1 so that we have a GP of length 2d− 1 and
can find two independent polynomials of degree d having common root (mod
N).

It should be mentioned that finding GP even in the cases k = 2, 3, . . . , d− 2
satisfying suitable size property is supposed to be a difficult problem. Moreover,
for given GP of length d+ k, we may find more than two polynomials having
common roots (mod N), and the size of the coefficients of such polynomials are
determined by the size of ~c. Our aim is to generalize the idea of Montgomery
to the case of GP ~c (mod N) of arbitrary length d + k and also to provide
an unified approach for the polynomials of degree d having common roots
(mod N) arising from a GP ~c of variable length such as d + 1 [15, 17] and
2d− 1 [12]. Moreover we will clarify the relations between the polynomials of
different degree d having common root (mod N) for given GP ~c of fixed length.
As an example, we will show that, for given 5-term GP of size O(N2/3), we
may generate 2 cubic polynomials and 4 polynomials of degree 4, all having
coefficients of size O(N1/6) and the same common root (modN). To summarize
the raised questions;

• How many independent polynomials we may generate for given GP of fixed

length?
• What are the possible degrees of such polynomials?
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• How the size of the coefficients of such polynomials is related to the size of

the given GP?

We will answer all the above questions in the following theorem below. For
given polynomial f(x) =

∑
aix

i, let us define the norm of f as ||f || =
√∑

a2i .

Theorem 1. Let d and k be integers with d ≥ 2 and 1 ≤ k ≤ d − 1. Suppose

that ~c = [c0, c1, . . . , cd+k−1] is a GP (mod N) with ratio r and length d+k such

that the k vectors [c0, . . . , cd], [c1, . . . , cd+1], . . . , [ck−1, . . . , cd+k−1] ∈ Zd+1 are

linearly independent over Q. Then we may generate d − k + 1 polynomials fi
of degree at most d having common root r (mod N) satisfying

(3) ||f1|| · ||f2|| · · · ||fd−k+1|| = O

( ||~c ||k
Nk−1

)
.

Proof. Let Λ be the lattice in Zd+1 spanned by the following k independent
vectors

(4) ~v0 = [c0, . . . , cd], ~v1 = [c1, . . . , cd+1], . . . , ~vk−1 = [ck−1, . . . , cd+k−1],

obtained from d+1 consecutive terms of ~c. Define Ω to be the lattice in Zd+k+1

spanned by the column vectors of the following (d+ k + 1)×(d+ 1) matrix

(5)




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Kc0 Kc1 · · · Kcd
Kc1 Kc2 · · · Kcd+1

...
...

. . .
...

Kck−1 Kck · · · Kcd+k−1




,

where K is a constant. Then Theorem 4 of [14] says that, if {~x1, . . . , ~xd+1}
is an LLL-reduced basis of Ω and if one chooses K sufficiently large, then
{~x′

1, . . . , ~x
′
d−k+1} is an LLL-reduced basis for Λ⊥, where ~x′

i ∈ Zd+1 is the

vector obtained by taking the first (d+1)-terms of ~xi and Λ⊥ is the orthogonal

lattice of Λ. In [14], one may choose K > 2
d

2+
(d+1−k)(d−k)

4 vol(Λ), where Λ =

spanQ(Λ)∩Zd+1 is the complete lattice of Λ. Since one has 2d+(d−k)2vol(Λ) ≥
2

d

2+
(d+1−k)(d−k)

4 vol(Λ), one can also choose K > 2d+(d−k)2vol(Λ).
Therefore ~x′

i = (a0, a1, . . . , ad) ∈ Λ⊥ satisfies

0 = a0c0 + a1c1 + · · ·+ adcd ≡ a0 + a1r + a2r
2 + · · · adrd (mod N),

where r ≡ c−1
0 c1 (mod N), which implies that ~x′

i corresponds to a polynomial
fi(x) = a0 + a1x + · · · + adx

d with degree at most d. Hence we may consider
{f1, f2, . . . , fd−k+1} is a basis for Λ⊥ over Q of dimension d+1−k. A standard
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result of LLL-reduced basis says that

vol(Λ⊥) ≤
d−k+1∏

i=1

||fi|| ≤ 2
(d−k+1)(d−k)

4 vol(Λ⊥),

where vol(Λ⊥) = vol(Λ). Therefore, to estimate the size of fi, we need to
estimate the volume of Λ⊥. Observe that ~y ∈ Zd+1 is orthogonal to the vectors
~v0, ~v1, . . . , ~vk−1 defined in (4) if and only if it is orthogonal to the lattice Λ′

spanned by

~v0,
~v1 − r~v0

N
,
~v2 − r~v1

N
, . . . ,

~vk−1 − r~vk−2

N
,

where r is the geometric ratio of GP ~c. Since

vol(Λ⊥) = vol((Λ′)⊥) = vol(Λ′) ≤ vol(Λ′),

to estimate the volume of Λ⊥, we need to compute vol(Λ′) =
√
det(ATA)

where A is the k × k matrix with each column written as

~v0,
~v1 − r~v0

N
,
~v2 − r~v1

N
, . . . ,

~vk−1 − r~vk−2

N
.

Now

det(ATA)

=

∣∣∣∣∣∣∣∣∣




~v0
~v1−r~v0

N
...

~vk−1−r~vk−2

N




(
~v0

~v1−r~v0
N · · · ~vk−1−r~vk−2

N

)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

~v0 · ~v0 ~v0 · ~v1−r~v0
N · · · ~v0 · ~vk−1−r~vk−2

N
~v1−r~v0

N · ~v0 ~v1−r~v0
N · ~v1−r~v0

N · · · ~v1−r~v0
N · ~vk−1−r~vk−2

N
...

...
. . .

...
~vk−1−r~vk−2

N · ~v0 ~vk−1−r~vk−2

N · ~v1−r~v0
N · · · ~vk−1−r~vk−2

N · ~vk−1−r~vk−2

N

∣∣∣∣∣∣∣∣∣∣

=
1

N2(k−1)

∣∣∣∣∣∣∣∣∣

~v0 · ~v0 ~v0 · (~v1 − r~v0) · · · ~v0 · (~vk−1 − r~vk−2)
(~v1 − r~v0) · ~v0 (~v1 − r~v0) · (~v1 − r~v0) · · · (~v1 − r~v0) · (~vk−1 − r~vk−2)

...
...

. . .
...

(~vk−1 − r~vk−2) · ~v0 (~vk−1 − r~vk−2) · (~v1 − r~v0) · · · (~vk−1 − r~vk−2) · (~vk−1 − r~vk−2)

∣∣∣∣∣∣∣∣∣

=
1

N2(k−1)
det(BTB),

where B is the matrix with each column vector written as ~v0, ~v1 − r~v0, ~v2 −
r~v1, . . ., ~vk−1− r~vk−2. Since the base change matrix between the following two
bases for Qd+1,

{~v0, ~v1, ~v2, . . . , ~vk−1},
{~v0, ~v1 − r~v0, ~v2 − r~v1, . . . , ~vk−1 − r~vk−2},
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is triangular and having 1 in all diagonal entries (in particular unimodular),
they span the same lattice and thus we get det(BTB) = det((~vi · ~vj)) =
O(||~c ||2k). Consequently one gets

vol(Λ⊥) ≤ vol(Λ′) = O

( ||~c ||k
Nk−1

)

which completes the proof. �

Corollary 1. With the same conditions in Theorem 1, suppose that k vec-

tors [c0, c1, . . . , cd−1], [c1, c2, . . . , cd], . . . , [ck−1, ck, . . . , ck+d−2] of consecutive d
terms are linearly independent over Q. Then we get at least one polynomial of

degree d having r as a zero (mod N). Moreover if all fi are

O

(( ||~c||k
Nk−1

)1/(d−k+1)
)
,

then we may choose all such polynomials having degree d.

Proof. On the contrary, assume that all fi found in Theorem 1 have degree < d.
This happens when the basis vectors ~x′

1, . . . , ~x
′
d−k+1 for Λ

⊥ have last coordinate

0 (i.e., ~x′
i = (a0, a1, . . . , ad−1, 0) ). Then we may view {~x′

1, . . . , ~x
′
d−k+1} ⊂ Zd

which spans (d − k + 1)-dimensional orthogonal subspace to k independent
vectors [ci, ci+1, . . . , ci+d−1] (0 ≤ i ≤ k − 1) in Zd, which is absurd. For the
second assertion, let f ∈ {f1, f2, . . . , fd−k+1} be a polynomial of degree d.
Then for any fi with deg fi < d, we may replace fi by fi + f so that the
resulting polynomial has common root r (mod N) and the coefficients are of

O

((
||~c||k

Nk−1

)1/(d−k+1)
)
. �

One can also think of the converse of Theorem 1 and it can be phrased as
follows.

Theorem 2. Suppose 1 ≤ k ≤ d − 1 and j = ⌈d−1
k ⌉ + 1. Assume that there

exist degree d polynomials g1(x), . . . , gj(x) ∈ Z[x] having common root r (mod
N) such that g1, . . . , gj are linearly independent over Q. Then one can find GP

~c = [c0, . . . , cd+k−1] (modN ) of length d + k and ||~c|| = O(||g||d+k−1) where

||g|| = max||gi||.

Proof. The condition j = ⌈d−1
k ⌉ + 1 implies (j − 1)k < d + k − 1 ≤ jk. One

may consider (2d+ 2k − 1)× (d+ k) matrix

(6) M =




Id+k

KG1

...
KGj−1

KGj




,
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where Id+k is the identity matrix of dimension d+ k and KGi(1 ≤ i ≤ j − 1)
is k × (d+ k) submatrix spanned by the k row vectors in Zd+k

[

d+1︷︸︸︷
Kgi,

k−1︷ ︸︸ ︷
0, . . . , 0], [0,

d+1︷︸︸︷
Kgi,

k−2︷ ︸︸ ︷
0, . . . , 0], . . . , [

k−1︷ ︸︸ ︷
0, . . . , 0,

d+1︷︸︸︷
Kgi].

The submatrixKGj is defined similarly but the number of cyclic shifts (i.e., the
number of rows) is d+k−1−(j−1)k. Now as in the case of the matrix in (5), one
may think of LLL reduced basis of d+k column vectors ofM. Theorem 4 in [14]
again says that, if K is sufficiently large, we have one dimensional orthogonal
lattice ~c = [c0, c1, . . . , cd+k−1] ⊂ Zd+k to the lattice of dimension d + k − 1
spanned by the row vectors of KG1, . . . ,KGj. Since [1, r, r2, . . . , rd+k−1] is
also orthogonal to all the row vectors of KG1, . . . ,KGj (mod N), one finds
that ~c and [1, r, r2, . . . , rd+k−1] spans the same space (mod N), and therefore
the ratio of ~c (mod N) is r. Finally the volume of the lattice ~c is bounded by
the volume of the lattice spanned by the d+k−1 row vectors of KG1, . . . ,KGj

and is of O(||g||d+k−1). �

Remark 1. From Theorems 1 and 2, it is natural to expect j ≤ d − k + 1.
Indeed, if j > d− k + 1, then from d− k + 2 ≤ j < d+2k−1

k , we get (k − 1)d <

k2 − 1 = (k − 1)(k + 1) and thus d < k + 1 which is a contradiction.

The following corollary shows that, for given GP of fixed length l, one can
obtain several polynomials with similar size having common root (mod N) for
various degrees d with l

2 < d < l, which implies the size of the coefficients
depends on the length of GP not on the degree.

Corollary 2. Let ~c be a GP (mod N) of l-term of size O(N ǫ l−1
l+1 ) with d <

l < 2d and 0 < ǫ < l+1
l−1 . Then we may generate 2d− l + 1 polynomials fi with

degree at most d such that

2d−l+1∏

i=1

||fi|| = O(N ǫ 2d−l+1
l+1 ·N (ǫ−1)(l−d−1)).

Proof. From Theorem 1, by letting l = d+ k,

||f1|| · ||f2|| · · · ||f2d−l+1|| = O

( ||~c||l−d

N l−d−1

)
= O

(
N ǫ (l−1)

l+1 (l−d)

N ǫ(l−d−1)
· N

ǫ(l−d−1)

N l−d−1

)

= O
(
N ǫ (l−d)(l−1)

l+1 −ǫ(l−d−1) ·N (ǫ−1)(l−d−1)
)

= O
(
N ǫ 2d−l+1

l+1 ·N (ǫ−1)(l−d−1)
)
.

�

Remark 2. Letting ǫ = 1, one has

2d−l+1∏

i=1

||fi|| = O(N
2d−l+1

l+1 ).
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Moreover, if all fi have roughly the same size, we get ||fi|| = O(N
1

l+1 ). For
example, if l = 2d − 1, we get two polynomials of degree at most d of size

O(N
1
2d ) as expected in [12, 13]. The condition ||fi|| = O(N

1
l+1 ) implies that

the size of fi does not depend on the degree l
2 < d < l for fixed l. For example,

if we have a 5-term GP of O(N2/3), then we may generate 2 polynomials of
degree 3 for (d, k) = (3, 2), and also 4 polynomials of degree 4 for (d, k) = (4, 1),
where all the coefficients are of O(N1/6).

Corollary 3. With the same conditions in Theorem 1, suppose that r2d+2 − 1
is relatively prime to N . Let h(x) ∈ Z[x] be a polynomial of degree at most d
such that h(r) ≡ 0 (mod N). Then there exist integers s1, s2, . . . , sd−k+1 such

that h(x) ≡∑d−k+1
i=1 sifi(x) (mod N).

Proof. For any polynomial f(x) =
∑d

i=0 aix
i of degree at most d, define a

vector ~f = [a0, . . . , ad] in Zd+1. Since Qd+1 is spanned by the basis vectors,
~f1, ~f2, . . . , ~fd−k+1, ~v0, ~v1, . . . , ~vk−1 where ~vi are defined in (4), we have

~h =

d−k+1∑

i=1

si ~fi +

k−1∑

j=0

tj~vj

for some si, tj in Q. Now letting ~r = [1, r, . . . , rd] and noticing the ratio of the
GP ~c = [c0, . . . , cd+k−1] (mod N) is r, we get

~vj = [cj , cj+1, . . . , cd+j ] ≡ cj~r (mod N).

Therefore

0 ≡ h(r) ≡ ~h · ~r
≡
∑

sifi(r) +
∑

tj(~vj · ~r) ≡
∑

tjcj(~r · ~r)

≡
∑

tjcj(1 + r2 + r4 + · · ·+ r2d) ≡ r2d+2 − 1

r2 − 1

∑
tjcj (mod N).

Since r2d+2 − 1 is relatively prime to N , we get
∑k−1

j=0 tjcj ≡ 0 (mod N).
Consequently

~h =
d−k+1∑

i=1

si ~fi +
k−1∑

j=0

tj~vj ≡
d−k+1∑

i=1

si ~fi +
k−1∑

j=0

tjcj~r

≡
d−k+1∑

i=1

si ~fi + ~r(

k−1∑

j=0

tjcj) ≡
d−k+1∑

i=1

si ~fi (mod N).
�

4. Constructing GP (mod N)

4.1. GP (mod N) with length d + 1

As is mentioned in Section 2.1.1, one finds such GP by the base-m method
with m = ⌊N1/d⌋ + j for small j so that the base-m expansion of N , N =
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∑d
i=0 aim

i, gives a polynomial f(x) =
∑d

i=0 aix
i with f(m) ≡ 0 (mod N) and

coefficients ai = O(N
1
d ). On the other hand, Theorem 1 says that we can find d

such polynomials of degree d with coefficients O(N
d−1

d2 ) having m as a common
zero (mod N). It should be mentioned that d polynomials in Theorem 1 are
obtained via LLL algorithm [11] not from the base-m method. Also since there
are d polynomials, we have much freedom in manipulating those polynomials
via rotations and translations to find optimal polynomials having good root
property. By extending the idea of GP in (2) of Montgomery, we may generate
GP (mod N) with length d+ 1 as follows.

Proposition 1. Suppose p is a prime such that

(i) p < N1/d, (ii) xd ≡ N (mod p) is solvable.

Let r be a solution of xd ≡ N (mod p) with |r −N1/d| ≤ p
2 . Then

(7) ~c = [c0, c1, c2, . . . , cd] =

[
pd−1, pd−2r, . . . , rd−1,

rd −N

p

]

is a (d+ 1)-term GP (mod N) of size O(N1−1/d) with geometric ratio rp−1

(mod N).

Remark 3. Heuristic argument tells that, for randomly chosen prime p with
p ≡ 1 (mod d), the probability that N is a d-th power residue (mod p) is 1

d .
Therefore we may generate plenty of p and r satisfying the conditions of the
Proposition 1.

Remark 4. Letting p = 1, we get ~c = [1, r, r2, . . . , rd −N ] which is exactly the
base-m method. Thus the proposed method is a generalization of the base-
m method and has more flexibility. Note that p in the proposition need not
necessarily be a prime as long as the solutions of xd ≡ N (mod p) are efficiently
computable. One possible direction of this idea is to think of the solutions of
xd ≡ N (mod

∏
pi) using Chinese Remainder Theorem from the solutions of

xd ≡ N (mod pi).

Remark 5. Another generalization of Proposition 1 is using kN in place of N ,
where k is small and a product of small primes. Therefore if r is a solution of
xd ≡ kN (mod p), then the GP

(8) ~c =

[
pd−1, pd−2r, . . . , rd−1,

rd − kN

p

]

produces polynomials fi(x) such that fi(p
−1r) ≡ 0 (mod kN), which implies

that fi(x) ≡ 0 (mod q) has a solution for all primes q dividing k. In this way,
one may find polynomials with good root properties. (See Example 2.)

Applying LLL algorithm on the (d+ 2)× (d+1) matrix in (5) with the GP

in (7) or (8) gives d polynomials of degree d with coefficients size O(N (d−1)/d2

)
under the assumption of Corollary 1. All generated polynomials have p−1r as a
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common root (mod N) and the linear polynomial px−r also has p−1r (mod N)
as a root. We can also extend our idea to select skewed polynomials following
the method in [15]. For given skewness s and GP ~c, applying LLL algorithm
on the column vectors of

(9)




1 0 · · · 0
0 s · · · 0
...

...
. . .

...
0 0 · · · sd

Kc0 Kc1 · · · Kcd




gives d skewed polynomials.

Example 1. Let

N = C59

= 71641520761751435455133616475667090434063332228247871795429

and d = 3 as in [15]. We choose prime p = 41532518328905334671 near N1/3.
Then x3 −N ≡ 0 (mod p) has solution r = 25417166874734771107. Running

LLL algorithm with the GP ~c = [p2, pr, r2, r
3−N
p ] gives 3 polynomials of degree

3 having common root p−1r (mod N):

f1(x) = 2294658610753x3+ 9597429436365x2− 1723025618025x

− 771270274282,

f2(x) = 11446806849070x3− 244248671393x2+ 4093360192946x

+ 6409599094515,

f3(x) = 5816639714842x3+ 718509494635x2− 13763827243329x

+ 12637580760070.

Since l(x) = px− r has the common root p−1r (mod N) also, using Corollary
3, we may express l(x) as a linear combination

l(x) ≡ −232236f1(x) + 1304425f2(x) + 2658649f3(x) (mod N).

Example 2. Let N, d be the same as in Example 1. We choose prime p =
15712338827 near (210N)1/6. Then x3 ≡ 210N (mod p) has solution r =

246864077935052193511. Let s = 5000 ≈ N
1
12 be the skewness parameter.

Running LLL algorithm on the matrix (9) with ~c = [p2, pr, r2, r3−210N
p ] gives 3

skewed polynomials of degree 3 having common root p−1r (mod N):

f1(x) = 115x3 + 43124977x2 + 1893281131859157x

+ 4083363045384283521,

f2(x) = 100x3 + 37499980x2 + 1646332102153129x

− 7182470305537674917,

f3(x) = 2998982x3 + 1127760117969x2+ 374107139392334x
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− 2209056969433053257.

The above polynomials have α(f1) = −1.50, α(f2) = −1.96, α(f3) = −0.09,
of which two polynomials f1 and f2 have better α-values than α(f) = −0.41,
α(g) = −0.65 in page 9 of [15], where

f(x) = 42044x3 − 58243x2 + 216589713956652x+ 309824665860518028,

g(x) = 189599x3 − 262649x2 − 11115144906243x− 3123165185295940301.

Moreover our resultant Res(f1, f2) = −26250N = N1.075 is just 64-digits while
Res(f, g) = N1.22 in [15] is of 73 digits. Our resultant is 9-digits less than [15]
and only 5-digits more than N .

Since we may try many possible candidates of p, r and k satisfying rd ≡ kN
(mod p), it is a more flexible method than that of the base-m method, so
it is expected to get polynomials of better yields when combined with other
techniques. In our implementations, we could generate plenty of examples of
polynomial pairs with resultant of 65,66-digit range.

Example 3. Let N=RSA-768 [9, 16], a 232-digit integer. When we apply the
method of [15], we could not get a pair of polynomials having resultant of size
less than 289-digits in reasonable amount of time. However, using the GP in (7),
one very often finds polynomial pairs having resultant in 282,283 digit range.
For example, letting p = 327337054627163072561124350630841970393 and r =
10714954733198634148690454723380273838963973618831054709981043058017
1279354053 with s = 4× 1018, LLL algorithm produces

f1(x) = 178655088759073666x3

+ 9696929338346221481203875687202415892x2

+ 3252861381469571959984877544904580973969779093081174675563x

+ 15877598506000956677510051132437572018314960999478584308113

20129764288127373,

f2(x) = 89327544379536833x3

+ 4848464669173110740601937843601207946x2

+ 1626430690734785980156107299765872023265451721856008322978x

− 52780893740693122909576771060279490593904120044181344334499

555225203495613340,

where the resultant of the two polynomials is of 282-digits.

To summarize, even if we cannot improve the asymptotic complexity of Prest
and Zimermann, we have more diverse output polynomials by using the GP in
(7) or in (8).
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4.2. GP (mod N) with length d + 2

We introduce a form of (d+ 2)-term GP (mod N) of size O(N1−1/d) which
improves a GP introduced in Proposition 1.

Proposition 2. With the same conditions in Proposition 1, assume further

N1/d = O(p) and suppose that

(10) drd−1x ≡ −rd −N

p
(mod p)

has a solution t with t = O(1). Then we can find a GP (mod N) with length

d+ 2 and size O(N1−1/d).

Proof. Write r∗ = r + tp where t is a solution of (10). By Hensel’s Lemma, r∗

is a solution of xd ≡ N (mod p2) with |r∗ −N1/d| = O(p). Therefore the first
d+ 1 terms of the following GP

~c∗ = [c∗0, c
∗
1, . . . , c

∗
d−1, c

∗
d, c

∗
d+1](11)

=

[
pd−1, pd−2r∗, . . . , r∗d−1,

r∗d −N

p
,
r∗(r∗d −N)

p2

]
,

are of O(N1−1/d), i.e., c∗0, c
∗
1, . . . , c

∗
d = O(N1−1/d). Also the assumptionN1/d =

O(p) implies r = O(p). Therefore r∗

p = r
p+t = O(1) and we get cd+1 = c∗d · r

∗

p =

O(N1−1/d). �

Remark 6. An equivalent condition of Proposition 2 is that there exists a prime
p with p ≈ N1/d such that xd ≡ N (mod p2) has a solution r∗ with r∗ ≈ p.

Next corollary shows that the GP introduced above gives polynomials with
special properties.

Corollary 4. Let f(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 be a polynomial of

degree d obtained by applying (d+2)-term GP in (11). Then we get ad−1 = 0.

Proof. From the orthogonality condition

[a0, a1, . . . , ad] ⊥ [c∗0, . . . , c
∗
d−1, c

∗
d], [c

∗
1, . . . , c

∗
d, c

∗
d+1],

we obtain two equations

c∗0a0 + · · ·+ c∗d−1ad−1 + c∗dad = 0,

c∗1a0 + · · ·+ c∗dad−1 + c∗d+1ad = 0.

By cancelling ad from the above two equations,

0 = (c∗1c
∗
d − c∗0c

∗
d+1)a0 + · · ·+ (c∗d−1c

∗
d − c∗d−2c

∗
d+1)ad−2 + (c∗2d − c∗d+1c

∗
d−1)ad−1

= (c∗2d − c∗d+1c
∗
d−1)ad−1 +

d−2∑

i=0

(c∗i+1c
∗
d − c∗i c

∗
d+1)ai

= (c∗2d − c∗d+1c
∗
d−1)ad−1 +

d−2∑

i=0

(c∗i+1c
∗
d − c∗i

r∗

p
c∗d)ai = (c∗2d − c∗d+1c

∗
d−1)ad−1
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Since c∗d+1c
∗
d−1 − c∗2d 6= 0, we have ad−1 = 0. �

Therefore if we can find a GP introduced in (11), then we may generate
polynomials whose second highest coefficient is zero. It may give some possible
advantage in NFS algorithms. In particular, when d = 3, we can generate
2 cubic polynomials of coefficients size O(N1/6) with coefficient of x2 zero.
Unfortunately, for large N , it is not easy to find such p and r.

Example 4. Let

N = 423041969220917498994258105726413131007857122320328452018685647

183243989207067562854126526319224996125411937956761760960982730

7882677812374604431591,

p = 86780311529808721931721992037430747197838979488843.

Then we find that

r = 29603635990292704794807646350860921932096349571925

is a root of x3 ≡ N (mod p2). We get a 5-term GP (mod N) as ~c = [p2, pr,

r2, r3−N
p , r(r3−N)

p2 ]. With this GP as an input, running LLL algorithm on the

lattice in (5) produces 2 cubic polynomials

f1(x) = − 8116950049797780711187519x3

− 1688260398012823864483775x

+ 845607602689391086623103,

f2(x) = 4651940093238598505835598x3

− 9723680053745338536987047x

+ 3162508075411166438869149

for the case d = 3, k = 2. If we let d = 4, k = 1, then we obtain 4 polynomials
of degree 4 as follows:

f1(x) = − 16624470838844689974x4− 12938092473604980037x3

+ 30640947335461408697x2− 49074330569257104938x

+ 13793429687479158462,

f2(x) = 51774904293910722379x4+ 5013277696651692475x3

− 26435016679243240057x2− 17960790855546870693x

+ 8449918455213426306,

f3(x) = 56975869172891318371x4− 78804912313470526585x3

+ 29417741697300821984x2− 7467219681293498172x

+ 1096444195584483276,

f4(x) = − 6519320118240082935x4− 64290644589732753918x3
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− 72206567262569865997x2− 22589152230759774686x

+ 18318665834905661971.

All 6 generated polynomials have a common root p−1r (mod N). Therefore
we obtain 1 polynomial pair of degree (3,3), 8 polynomial pairs of degree (3,4),
6 polynomial pairs of degree (4,4).

Remark 7. Similarly as in Section 4.1, we may extend the idea in Proposition
2 to more general case when xd ≡ kN (mod p2) with small k has a solution
r∗ ≈ p so that

(12)

[
pd−1, pd−2r∗, . . . , r∗d−1,

r∗d − kN

p
,
r∗(r∗d − kN)

p2

]

is a (d+ 2)-term GP (mod N) of O(N1−1/d).

Example 5. Let

N = 168834590208762984446319148396789339126790503839970174322869249

273585940790701287131167723523616869492186073833295002809344574

858225424063120520739,

p = 20786403171775734254530527129787360981315034315689.

Then we find that

r = 10987082923505665553450517558833126792918987927123

is a root of x3 ≡ 2N (mod p2). From a 5-term GP (mod N) as ~c = [p2, pr, r2,
r3−2N

p , r(r3−2N)
p2 ], we get 2 cubic polynomials

f1(x) = − 445218486316441693570901x3+ 3218179925062891008762289x

− 1652026415030852834936442,

f2(x) = 6326610942464715823045483x3+ 957352078030341972013302x

− 1202453504031298246542337

for the case d = 3, k = 2. If we let d = 4, k = 1, then we obtain 4 polynomials
of degree 4 as follows:

f1(x) = 40725604535642044969x4− 11022519451825502552x3

− 4066968993224061128x2− 17238176802325597530x

+ 8894146694875284580,

f2(x) = 3652657032944504985x4+ 8963291749243508734x3

+ 37667218565731674633x2+ 6020873000161721323x

− 15110171934817525190,

f3(x) = 21199833043574518000x4+ 15465081109028449002x3

− 11188422457511654794x2− 36606564924168648047x
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+ 19037810592983267379,

f4(x) = 16100268889487099142x4+ 24545336906131849397x3

− 43855358246247647366x2+ 24879390417122847169x

− 5157998444878033115,

where all 6 polynomials have common root p−1r (mod N).

Using xd ≡ kN (mod p2) for many small k increases the probability that
the equation is solvable. In practice, the GP in (12) is much easier to find
than the GP with k = 1. For instance, in Example 4 with k = 1, there are 3
pairs (p, r∗) such that r∗3 ≡ N (mod p2) with |r∗| ≤ 10p and m

10 < p < m. If
we extend our search range to 1 ≤ k ≤ 10, then have 27 of (p, r∗) such that
r∗3 ≡ kN (mod p2) with |r∗| ≤ 10p and m

10 < p < m, which is not so cost
effective because we get less than three times of (p, r∗) even if we increased the
range of k ten times. On the other hand, reducing the search range of p from
m
10 < p < m to m

10 < p < 19m
100 produces 9 pairs of (p, r∗) with 1 ≤ k ≤ 10. That

is, we still find more GP by reducing the range of p and increasing the range
of k, which seems more effective since we consider congruence equations (mod
p2) for smaller values of p.

Table 1 show a small numerical data for the number of the pair (r∗, p)
satisfying r∗3 ≡ kN (mod p2) for all N which is a product of two primes
q1 6= q2 with 104 < q1, q2 < 105. Note that each pair (r∗, p) corresponds to a
GP of length 5 which is either the form of (11) or (12). This result suggests that
5-term GP (11) and (12) exist with high probability, even though the number
of GP is relatively small for each N . Moreover it says that one is more likely
to find solution of x3 ≡ kN (mod p2) by increasing the range of k rather than
that of p. It should be mentioned that it also saves the time for the following
reason. If we increase the range of k from k = 1 to 1 ≤ k ≤ 10, the number of
equations x3 ≡ kN (mod p2) we need to consider is increased by the factor of
10. However if we increase the range of p from m

10 < p < m to m
10 < p < 10m,

the number of equations x3 ≡ kN (mod p2) we need to consider is increased by
the factor of π(9910m)/π( 9

10m) ≈ 11 but the catch in this case is that we have

to solve the congruence equation x3 ≡ kN (mod p2) for ten times larger size
of p which inevitably slow down the implementation time on PARI-GP, as is
shown in the table.

5. Conclusions

We presented a method of constructing nonlinear polynomials of degree d for
all l

2 < d < l having common roots (mod N) given GP (mod N) of fixed length
l. We also give the estimation of the size of the coefficients of the nonlinear
polynomials in terms of the size of the given GP, which generalizes Mont-
gomery’s method. We showed that the GP of length d+ 1 can be constructed
in more flexible way than the usual base-m method and we find corresponding
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Table 1. Existence of GP (11) and (12)

k = 1 k = 1 1 ≤ k ≤ 10
m
10 < p < m m

10 < p < 10m m
10 < p < 19m

100

Average number of (r∗, p) with |r∗| ≤ 5p for each N 2.29 3.94 7.46
The number of N such that 89.79% 98.04% 99.91%
x3 ≡ kN (mod p2) has a solution |r∗| ≤ 5p
Average number of (r∗, p) with |r∗| ≤ 10p for each N 3.81 6.57 12.44
The number of N such that 97.75% 99.85% 100%
x3 ≡ kN (mod p2) has a solution |r∗| ≤ 10p
PARI-GP time estimation on 2 days 18 days 2days
Intel U7300 1.30GHz CPU laptop

polynomials of various degrees having common root (mod N). We also stated
the conditions when a special GP of length d+ 2 exists.
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