This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.
A study was conducted to investigate an optimal vibration frequency for mobile phones with just noticeable difference(JND). The just noticeable difference, Weber's law, is the minimum amount by which stimulus intensity must be changed in order to produce a noticeable variation in sensory experience. In order to find the optimal vibration frequency, sixteen frequencies ranged from 24Hz to 603Hz were selected. Subjects then wereasked to differentiate a pair of vibration frequencies. For the analysis, the psychometric function to determine the optimal vibration frequency and the logistic regression to validate the determined frequency were used. The results show that the 2nd order polynomial equations were best fitted for the JND psychometric function and the optimal mobile phone vibrations were determined at 140Hz, 151 Hz, and 160Hz. With the ogive-shaped psychometric function developed by the logistic regression, the results of this study was validated that the determined vibration frequencies (140Hz, 151 Hz, and 160Hz) were optimal mobile phone vibration frequencies.
Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.
수소혼합가스토치를 이용하여 유리 모서리 접합 시 접합부의 형상은 수소혼합가스의 유량, 토치의 이송속도, 토치와 유리사이의 거리 등 많은 공정변수들에 의해 영향을 받는다. 모서리 접합형상은 유리패널의 단열 및 기밀, 강도성능에 영향을 미치므로, 공정변수에 따른 접합부 형상예측에 대한 연구가 수행되어야 한다. 따라서 본 논문에서는 공정변수 설정 및 실험분석을 통하여, 공정변수에 따른 단면형상을 예측할 수 있는 회귀식을 도출하였다. 도출된 회귀식에 각 공정변수값을 적용하여 접합형상을 예측하고, 실제 모서리 접합 실험결과와 비교하여 회귀식의 타당성을 검증하였다.
With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases
This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.
선박의 주묘 위험성을 평가할 수 있는 프로그램이 개발되어 있지만 선박의 제원에 해당되는 다양한 입력요소들을 직접 찾아서 입력해야 하므로 VTS 관제사가 정박지에 정박 중인 선박들로부터 이러한 입력요소들을 모두 확인하여 프로그램을 활용하는 것은 현실적으로 어려운 상황이다. 이에 본 연구에서는 VTS 관제사 입장에서 선박으로부터 쉽게 획득할 수 있는 총톤수(GT)를 독립변수로 설정하고 프로그램 입력요소들을 종속변수로 하여 선형 및 비선형 회귀분석을 실시하였다. 다항식 모델(선형)과 멱급수 모델(비선형)의 적합도를 비교한 결과, 컨테이너선과 벌크선의 경우에는 모든 입력요소에서 멱수급 모델이 적합한 것으로 평가되었다. 하지만 탱커선의 경우에는 수선간장, 선폭, 흘수는 멱수급 모델이 적합하고, 정면풍압면적, 앵커의 무게, 의장수, 묘쇄공으로부터 선저까지의 높이는 다항식 모델이 더 적합한 것으로 평가되었다. 또한 탱커선의 정면풍압면적 요소를 제외한 다른 나머지 종속변수들은 모두 결정계수가 0.7 이상으로 높은 적합도를 보였다. 따라서 주묘 위험성 평가 프로그램의 입력요소 중 외력 요소, 해저 저질, 수심 및 앵커 체인의 신출량을 제외한 나머지 입력요소들은 선박의 총톤수만 입력하면 회귀분석 모델식에 의해 자동으로 입력됨으로써 주묘 위험성 평가가 가능할 것으로 판단된다.
본 논문은 딥러닝 기반 객체 탐지 모델과 다항 회귀모델을 이용하여 사과나무에 열린 사과의 개수를 예측할 수 있는 새로운 알고리즘을 제안한다. 사과나무에 열린 사과의 개수를 측정하면 사과 생산량을 예측할 수 있고, 농산물 재해 보험금 산정을 위한 손실을 평가하는 데에도 활용할 수 있다. 사과 착과량 측정을 위해 사과나무의 앞면과 뒷면을 촬영하였다. 촬영된 사진에서 사과를 식별하여 라벨링한 데이터 세트를 구축하였고, 이 데이터 세트를 활용하여 1단계 객체 탐지 방식의 CNN 모델을 학습시켰다. 그런데 사과나무에서 사과가 나뭇잎, 가지 등으로 가려진 경우 영상에 포착되지 않아 영상 인식 기반의 딥러닝 모델이 해당 사과를 인식하거나 추론하는 것이 어렵다. 이 문제를 해결하기 위해, 우리는 두 단계로 이루어진 추론 과정을 제안한다. 첫 번째 단계에서는 영상 기반 딥러닝 모델을 사용하여 사과나무의 양쪽에서 촬영한 사진에서 각각의 사과 개수를 측정한다. 두 번째 단계에서는 딥러닝 모델로 측정한 사과 개수의 합을 독립변수로, 사람이 실제로 과수원을 방문하여 카운트한 사과 개수를 종속변수로 설정하여 다항 회귀 분석을 수행한다. 본 논문에서 제안하는 2단계 추론 시스템의 성능 평가 결과, 각 사과나무에서 사과 개수를 측정하는 평균 정확도가 90.98%로 나타났다. 따라서 제안된 방법은 수작업으로 사과의 개수를 측정하는 데 드는 시간과 비용을 크게 절감할 수 있다. 또한, 이 방법은 딥러닝 기반 착과량 예측의 새로운 기반 기술로 관련 분야에서 널리 활용될 수 있을 것이다.
사과의 영양진단에서 사과잎 분석을 신속히 하기 위한 방법을 모색하기 위해 생잎과 건조잎을 이용해 근적의 스펙트럼을 측정하고 이를 질소 함량과의 최적의 상관관계를 도출하기 위해 부분소자승(PLS)과 주성분회귀(PCR)과 같은 다변량 분석법을 이용하여 비파괴 검량식을 작성하였다. 또한 검량식 작성에서 비파괴 측정 정확도를 향상시키기 위하여 smoothing, mean normalization, multiplicative scatter correction (MSC). derivative 등의 다양한 데이터 전처리 조작을 수행하여 정확도 향상 가능성을 조사하였다. 사과 건조잎의 비파괴 측정 가능성을 조사한 결과 PLS-1 모델에서 Norris first derivate하였을 태 RMSEP가 $0.6999g\;kg^{-1}$ 로 가장 좋았으며, 생잎은 Savitzky-Golay first derivate하였을 때에 RMSEP 가 $1.202g\;kg^{-1}$으로 가장 좋았다. 건조잎의 PCR 모델은 mean normalization 처리 후 Savitzky-Golay first derivative하였을 때가 RMSEP 가 $0.553g\;kg^{-1}$, 이었으며 생잎에서도 RMSEP는 $1.047g\;kg^{-1}$로 나타났다. 이와 같은 견과로서 사과의 생잎과 건조잎의 분석이 근적외분석기술에 의해 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.