• Title/Summary/Keyword: Polynomial Model

Search Result 886, Processing Time 0.027 seconds

The Mixing Properties of Subdiagonal Bilinear Models

  • Jeon, H.;Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.639-645
    • /
    • 2010
  • We consider a subdiagonal bilinear model and give sufficient conditions for the associated Markov chain defined by Pham (1985) to be uniformly ergodic and then obtain the $\beta$-mixing property for the given process. To derive the desired properties, we employ the results of generalized random coefficient autoregressive models generated by a matrix-valued polynomial function and vector-valued polynomial function.

A Study on the Large Scale Systems Simplification for computer processing (컴퓨터 처리를 위한 대규모 시스템의 간략법에 관한 연구)

  • 황형수;권오신;이창구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.280-286
    • /
    • 1987
  • A new method is presented for obtaining redced-order model for time-invariant systems. This method does not require the calculation of the reciprocal transformation, the alpha table, the beta-table and the alpha-beta expansion which should be calculated in Routh approximation method, hence it is computationally very attractive better than Routh approximation method, furthemore the stability of the reduced-order model is guaranted if the original system is stable. This method starts with the continued fraction espansion of auxiliary denominator polynomial give for the denominator polynomial of the reduced-order model. The coefficients of the numerator polynomial are then obtained by equating moment of the original and the reduced-order medel.

  • PDF

Fit Evaluation of the Image Segmentation Modelling for DEM Generation of Satellite Image (위성영상의 DEM 생성을 위한 영상분할 모델링 방법의 적합도 평가)

  • 이효성;안기원;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.229-236
    • /
    • 2003
  • In this study, for efficient replacemen of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

  • PDF

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Velocity Considered Sectional Porosity Equivalent Model (VSPE) of Filters for CFD Analysis of Breakaway Devices (수소 브레이크어웨이 디바이스 유동해석을 위한 필터의 구간별 다공성 등가 모델 제시)

  • Son, Seong-Jae;An, Su-Jin;Song, Tae-Hoon;Joe, Choong-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.82-90
    • /
    • 2019
  • We propose an equivalent model of a sintered metal mesh filter calculated by Ergun's equation and polynomial regression for the CFD analysis of breakaway devices at a hydrogen fueling station. CFD analysis of filters that cause high pressure loss is essential because breakaway devices in high-pressure hydrogen conditions require low pressure loss. A differential pressure experiment with a filter was performed in a low-pressure air condition considering similarities. An equivalent model was developed by deriving the resistance value by the polynomial regression using the experimental results. The results of CFD analysis using the equivalent model show that there was almost no error in the operating condition of the breakaway device compared to the experimental results. Through this work, we believe that the proposed equivalent model of a filter can be applied to the analysis of breakaway devices in hydrogen fueling stations. We will study how to optimize the shape and position of the filter in breakaway devices using the developed equivalent model.

Design of A Piecewise Polynomial Model Based Digital Predistortion for 60 GHz Power Amplifier (60 GHz 대역 전력 증폭기를 위한 구간별 차등 다항식 모델 기반의 디지털 사전왜곡기 설계)

  • Kim, Minho;Lee, Jingu;Kim, Daehyun;Kim, Younglok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.3-12
    • /
    • 2016
  • Recently, the study on 5G mobile communication systems using the millimeter-wave frequency band have been actively promoted and the importance of compensation of the nonlinearity of power amplifier caused by the characteristics of millimeter-wave frequency propagation attenuation is increasing. In the paper, we propose a piecewise polynomial model based on subdivision coefficient which are characteristics of power amplifier separated linear section and a non-linear section. In addition, the structure of digital predistortion based on the proposed model and direct learning method are proposed to implement a digital predistortion. To verify the proposed model, digital predistortion based on the proposed model and direct learning method for 60 GHz power amplifier using LTE signal implemented in the FPGA. And the hardware test bench measured performance and complexity. The proposed model achieves 3.3 dB gain over the single polynomial model in terms of the ACLR and reduces 7.5 percent in terms of the complexity.

Robust H Disturbance Attenuation Control of Continuous-time Polynomial Fuzzy Systems (연속시간 다항식 퍼지 시스템을 위한 강인한 H 외란 감쇠 제어)

  • Jang, Yong Hoon;Kim, Han Sol;Joo, Young Hoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2016
  • This paper introduces a stabilization condition for polynomial fuzzy systems that guarantees $H_{\infty}$ performance under the imperfect premise matching. An $H_{\infty}$ control of polynomial fuzzy systems attenuates the effect of external disturbance. Under the imperfect premise matching, a polynomial fuzzy model and controller do not share the same membership functions. Therefore, a polynomial fuzzy controller has an enhanced design flexibility and inherent robustness to handle parameter uncertainties. In this paper, the stabilization conditions are derived from the polynomial Lyapunov function and numerically solved by the sum-of-squares (SOS) method. A simulation example and comparison of the performance are provided to verify the stability analysis results and demonstrate the effectiveness of the proposed stabilization conditions.

Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons (퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크)

  • 박호성;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.