Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
Wind and Structures
/
제19권6호
/
pp.623-647
/
2014
In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.
심음은 심장이 수축, 확장 시에 심장의 움직임과 혈류의 흐름에 의해 발생하는 음향이다. 심음은 여러 신호원으로 이루어져 있고, 매우 복잡하고 비고정적인 신호이다. 심장의 질환에 따라 심음의 소리는 다르게 나타난다. 심음을 구분하여 심장 질환의 유무를 판단하는 가장 기초적인 기준이 될 수 있다. 본 연구에서는 Support Vector Machine 기법을 이용하여 심음을 통한 심장 질환 판별 검출 알고리즘을 제안하였다. Support Vector Machine은 신경망의 한 종류이며 이진분류에서 좋은 성능을 보인다. 또한 Polynomial Radial Basis Function, Multi-Layer Perceptron Classifiers를 위한 대안적인 학습방법으로 사용된다. 이러한 특성을 사용하여 심음의 데이터들을 일정한 기준에 의하여 (+)데이터와 (-)데이터로 분리한 후, 각 데이터들을 학습시켜 최적의 데이터를 만든다. 이후 각 데이터들은 점층적인 추가 학습을 시킴으로써 적은 양의 학습 데이터만으로도 높은 분류 성능을 표현할 수 있다. 이 연구에서 제안된 SVM을 실제 심음 데이터에 적용한 실험에서 심장 질환의 유무 판별에 우수한 성능을 보임을 확인할 수 있을 것으로 판단된다.
The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.
In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.
본 논문에서는 비동질 탄성무한공간에 대한 비례경계유한요소법의 동적강도행렬을 해석적으로 유도하였다. 해석영역의 비동질성은 비동질파라메터를 지수로 하는 멱함수로 고려하였다. 동적강도행렬은 진동수영역에서 다항식으로 점근전개한 후, 방사조건을 만족시키도록 하여 각 다항식의 계수를 구하는 과정을 통하여 유도되었다. 얻어진 동적강도행렬의 타당성을 검증하기 위해 정확해가 알려져 있는 대표적인 문제에 대하여 비동질파라메터의 값을 변화시키면서 수치해석을 수행하였다. 그 결과 유도된 동적강도행렬이 비동질공간에 대한 특성을 적절하게 반영하는 것으로 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권4호
/
pp.2292-2309
/
2017
Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권1호
/
pp.52-58
/
2005
We have developed a Group Method of Data Handling (GMDH) type algorithm for designing multi-layered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equation are tested for each neuron to make sure that only the best equation of two inputs is kept. All possible combinations of two inputs to each layer are also tested. By carefully testing each resulting neuron, we have developed an algorithm to keep only the best neurons at each level. The algorithm's goal is to create as accurate a network as possible while minimizing the size of the network. Software was developed to train and simulate networks using our algorithm. Several applications were modeled using our software, and the result was that our algorithm succeeded in developing small, accurate, multi-layer networks.
In this study, we compare the recognition performance using PCA and RBFNNs for introducing robust face recognition system to pose variations based on pose estimation. proposed face recognition system uses Honda/UCSD database for comparing recognition performance. Honda/UCSD database consists of 20 people, with 5 poses per person for a total of 500 face images. Extracted image consists of 5 poses using Multiple-Space PCA and each pose is performed by using (2D)2PCA for performing pose classification. Linear polynomial function is used as connection weight of RBFNNs Pattern Classifier and parameter coefficient is set by using Particle Swarm Optimization for model optimization. Proposed (2D)2PCA-based face pose classification performs recognition performance with PCA, (2D)2PCA and RBFNNs.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2686-2708
/
2020
This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.
The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.