• Title/Summary/Keyword: Polymorphism, single nucleotide

Search Result 861, Processing Time 0.028 seconds

A case of follow-up of a patient with 22q11.2 distal deletion syndrome and a review of the literature

  • Ha, Dong Jun;Park, Ji Sun;Jang, Woori;Jung, Na-young;Kim, Su Jin;Moon, Yeonsook;Lee, Jieun
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.110-116
    • /
    • 2021
  • Microdeletions of chromosome 22q11.2 are one of the most common microdeletions occurring in humans, and is known to be associated with a wide range of highly variable features. These deletions occur within a cluster of low copy repeats (LCRs) in 22q11.2, referred to as LCR22 A-H. DiGeorge (DGS)/velocardiofacial syndrome is the most prevalent form of a 22q11.2 deletions, caused by mainly proximal deletions between LCR22 A and D. As deletions of distal portion to the DGS deleted regions has been extensively studied, the recurrent distal 22q11.2 microdeletions distinct from DGS has been suggested as several clinical entities according to the various in size and position of the deletions on LCRs. We report a case of long-term follow-up of a female diagnosed with a 22q11.2 distal deletion syndrome, identified a deletion of 1.9 Mb at 22q11.21q11.23 (chr22: 21,798,906-23,653,963) using single nucleotide polymorphism array. This region was categorized as distal deletion type of 22q11.2, involving LCR22 D-F. She was born as a preterm, low birth weight to healthy non-consanguineous Korean parents. She showed developmental delay, growth retardation, dysmorphic facial features, and mild skeletal deformities. The patient underwent a growth hormone administration due to growth impairment without catch-up growth. While a height gain was noted, she had become overweight and was subsequently diagnosed with pre-diabetes. Our case could help broaden the genetic and clinical spectrum of 22q11.2 distal deletions.

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.

Validation and genetic heritability estimation of known type 2 diabetes related variants in the Korean population

  • Jang, Hye-Mi;Hwang, Mi Yeong;Kim, Bong-Jo;Kim, Young Jin
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.37.1-37.7
    • /
    • 2021
  • Genome-wide association studies (GWASs) facilitated the discovery of countless disease-associated variants. However, GWASs have mostly been conducted in European ancestry samples. Recent studies have reported that these European-based association results may reduce disease prediction accuracy when applied in non-Europeans. Therefore, previously reported variants should be validated in non-European populations to establish reliable scientific evidence for precision medicine. In this study, we validated known associations with type 2 diabetes (T2D) and related metabolic traits in 125,850 samples from a Korean population genotyped by the Korea Biobank Array (KBA). At the end of December 2020, there were 8,823 variants associated with glycemic traits, lipids, liver enzymes, and T2D in the GWAS catalog. Considering the availability of imputed datasets in the KBA genome data, publicly available East Asian T2D summary statistics, and the linkage disequilibrium among the variants (r2 < 0.2), 2,900 independent variants were selected for further analysis. Among these, 1,837 variants (63.3%) were statistically significant (p ≤ 0.05). Most of the non-replicated variants (n = 1,063) showed insufficient statistical power and decreased minor allele frequencies compared with the replicated variants. Moreover, most of known variants showed <10% genetic heritability. These results could provide valuable scientific evidence for future study designs, the current power of GWASs, and future applications in precision medicine in the Korean population.

Detection of Colletotrichum spp. Resistant to Benomyl by Using Molecular Techniques

  • Dalha Abdulkadir, Isa;Heung Tae, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2022
  • Colletotrichum species is known as the major causal pathogen of red pepper anthracnose in Korea and various groups of fungicides are registered for the management of the disease. However, the consistent use of fungicides has resulted in the development of resistance in many red pepper-growing areas of Korea. Effective management of the occurrence of fungicide resistance depends on constant monitoring and early detection. Thus, in this study, various methods such as agar dilution method (ADM), gene sequencing, allele-specific polymerase chain reaction (PCR), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were applied for the detection of benzimidazole resistance among 24 isolates of Colletotrichum acutatum s. lat. and Colletotrichum gloeosporioides s. lat. The result of the ADM showed that C. gloeosporioides s. lat. was classified into sensitive and resistant isolates to benomyl while C. acutatum s. lat. was insensitive at ≥1 ㎍/ml of benomyl. The sequence analysis of the β-tubulin gene showed the presence of a single nucleotide mutation at the 198th amino acid position of five isolates (16CACY14, 16CAYY19, 15HN5, 15KJ1, and 16CAYY7) of C. gloeosporioides s. lat. Allele-specific PCR and PCR-RFLP were used to detect point mutation at 198th amino acid position and this was done within a day unlike ADM which usually takes more than one week and thus saving time and resources that are essential in the fungicide resistance management in the field. Therefore, the molecular techniques established in this study can warrant early detection of benzimidazole fungicide resistance for the adoption of management strategies that can prevent yield losses among farmers.

Genetic variants of the growth differentiation factor 8 affect body conformation traits in Chinese Dabieshan cattle

  • Zhao, Shuanping;Jin, Hai;Xu, Lei;Jia, Yutang
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.517-526
    • /
    • 2022
  • Objective: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle. Methods: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals. Results: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle. Conclusion: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs.

Two Cases of Herpes Zoster Following Varicella Vaccination in Immunocompetent Young Children: One Case Caused by Vaccine-Strain (건강한 어린 소아에서 수두 백신 접종 후 발생한 대상포진 2예: 백신주에 의한 1예)

  • Kim, Da-Eun;Kang, Hae Ji;Han, Myung-Guk;Yeom, Hye-young;Chang, Sung Hee
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.110-117
    • /
    • 2022
  • Herpes zoster (HZ) has been reported in immunocompetent children who received the varicella vaccine. In vaccinated children, HZ can be caused by vaccine-strain or by wild-type varicella-zoster virus (VZV). Like wild-type VZV, varicella vaccine virus can establish latency and reactivate as HZ. We report two cases of HZ in otherwise healthy 16- and 14-month-old boys who received varicella vaccine at 12 months of age. They presented with a vesicular rash on their upper extremities three to four months after varicella vaccination. In one case, a swab was obtained by abrading skin vesicles and VZV was detected in skin specimens by polymerase chain reaction. The VZV open-reading frame 62 was sequenced and single nucleotide polymorphism analysis confirmed that the virus from skin specimen was vaccine-strain. This is the first HZ case following varicella vaccination confirmed to be caused by vaccine-strain VZV in the immunocompetent children in Korea. Pediatricians should be aware of the potential for varicella vaccine virus reactivation in vaccinated young children.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS

  • Dong Leng;Liangpeng Ge;Jing Sun
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1508-1516
    • /
    • 2023
  • Objective: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. Methods: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. Results: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. Conclusion: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.