Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.05.2022.0069

Detection of Colletotrichum spp. Resistant to Benomyl by Using Molecular Techniques  

Dalha Abdulkadir, Isa (Department of Plant Medicine, Chungbuk National University)
Heung Tae, Kim (Department of Plant Medicine, Chungbuk National University)
Publication Information
The Plant Pathology Journal / v.38, no.6, 2022 , pp. 629-636 More about this Journal
Abstract
Colletotrichum species is known as the major causal pathogen of red pepper anthracnose in Korea and various groups of fungicides are registered for the management of the disease. However, the consistent use of fungicides has resulted in the development of resistance in many red pepper-growing areas of Korea. Effective management of the occurrence of fungicide resistance depends on constant monitoring and early detection. Thus, in this study, various methods such as agar dilution method (ADM), gene sequencing, allele-specific polymerase chain reaction (PCR), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were applied for the detection of benzimidazole resistance among 24 isolates of Colletotrichum acutatum s. lat. and Colletotrichum gloeosporioides s. lat. The result of the ADM showed that C. gloeosporioides s. lat. was classified into sensitive and resistant isolates to benomyl while C. acutatum s. lat. was insensitive at ≥1 ㎍/ml of benomyl. The sequence analysis of the β-tubulin gene showed the presence of a single nucleotide mutation at the 198th amino acid position of five isolates (16CACY14, 16CAYY19, 15HN5, 15KJ1, and 16CAYY7) of C. gloeosporioides s. lat. Allele-specific PCR and PCR-RFLP were used to detect point mutation at 198th amino acid position and this was done within a day unlike ADM which usually takes more than one week and thus saving time and resources that are essential in the fungicide resistance management in the field. Therefore, the molecular techniques established in this study can warrant early detection of benzimidazole fungicide resistance for the adoption of management strategies that can prevent yield losses among farmers.
Keywords
benomyl; ${\beta}$-tubulin gene; fungicide resistance; red pepper anthracnose;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Albertini, C., Gredt, M. and Leroux, P. 1999. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pestic. Biochem. Physiol. 64:17-31.   DOI
2 Bradley, C. A., Lamey, H. A., Endres, G. J., Henson, R. A., Hanson, B. K., McKay, K. R., Halvorson, M., LeGare, D. G. and Porter, P. M. 2006. Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Dis. 90:1129-1134.   DOI
3 Chen, S. N., Shang, Y., Wang, Y., Schnabel, G., Lin, Y., Yin, L. F. and Luo, C. X. 2014. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin. Plant Dis. 98:1555-1560.
4 Chung, W.-H., Chung, W.-C., Peng, M.-T., Yang, H.-R. and Huang, J.-W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. N. Biotechnol. 27:17-24.   DOI
5 Chung, W.-H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K. and Kajitani, Y. 2006. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis. 90:506-512.   DOI
6 Damm, U., Cannon, P. F., Woudenberg, J. H. C. and Crous, P. W. 2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37-113.   DOI
7 Davidse, L. C. and Flach, W. 1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell Biol. 72:174-193.   DOI
8 Fungicide Resistance Action Committee. 2022. FRAC code list 2022: fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). URL https://www.frac.info/docs/defaultsource/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2 on 24/04/2022 [2 June 2022].
9 Goes, A. and Kimati, H. 1998. Colletotrichum acutatum, agente causal da queda prematura dos frutos citricos: resistente ou insensivel a benomyl? Summa Phytopathol. 24:246-253.
10 Hartill, W. F. T. 1986. Resistance of plant pathogens to fungicides in New Zealand. N. Z. J. Exp. Agric. 14:239-245.   DOI
11 Hwang, S., Kim, H.-R., Kim, J., Park, J.-H., Lee, S.-B., Cheong, S.-R. and Kim, H. T. 2010. Sensitivity of Colletotrichum spp. isolated from grapes in Korea to carbendazim and the mixture of carbendazim plus diethofencarb. Plant Pathol. J. 26:49-56.   DOI
12 Isa, D. A., Min, J. Y. and Kim, H.-T. 2021. Responses to carbendazim and analysis of field populations of Colletotrichum spp. isolated from several host plants. Korean J. Pestic. Sci. 25:73-81 (in Korean).   DOI
13 Ishii, H. and Yamaguchi, A. 1977. Tolerance of Venturia nashicola to thiophanate-methyl and benomyl in Japan. Ann. Phytopathol. Soc. Jpn. 43:557-561.   DOI
14 Jones, A. L. and Walker, R. J. 1976. Tolerance of Venturia inaequalis to dodine and benzimidazole fungicides in Michigan. Plant Dis. Rep. 60:40-44.
15 Kim, Y.-S., Min, J. Y., Kang, B. K., Van Bach, N., Choi, W. B., Park, E. W. and Kim, H. T. 2007. Analysis of the less benzimidazole-sensitivity of the isolates of Colletotrichum spp. causing the anthracnose in pepper and strawberry. Plant Pathol. J. 23:187-192.
16 Kim, J., Min, J. Y., Bae, Y. S. and Kim, H. T. 2009. Molecular analysis of Botrytis cinerea causing ginseng grey mold resistant to carbendazim and the mixture of carbendazim plus diethofencarb. Plant Pathol. J. 25:322-327.   DOI
17 Kim, J. T., Park, S.-Y., Choi, W., Lee, Y.-H. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24:17-23.   DOI
18 Kim, S., Min, J. and Kim, H. T. 2019. Occurrence and mechanism of fungicide resistance in Colletotrichum acutatum causing pepper anthracnose against pyraclostrobin. Korean J. Pestic. Sci. 23:202-211 (in Korean).   DOI
19 Martin, R. J. 1997. Modes of action of anthelmintic drugs. Vet. J. 154:11-34.   DOI
20 Moreira, R. R., Peres, N. A. and May De Mio, L. L. 2019. Colletotrichum acutatum and C. gloeosporioides species complexes associated with apple in Brazil. Plant Dis. 103:268-275.   DOI
21 Park, K. S. and Kim, C. H. 1992. Identification, distribution, and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J. Plant Pathol. 8:61-69.
22 Peres, N. A. R., Sauza, N. L., Peever, T. L. and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88:125-130.   DOI
23 Ross, R. G. and Newberry, R. J. 1985. Tolerance to benomyl of Venturia inaequalis in Nova Scotia. Can. J. Plant Pathol. 7:435-437.   DOI
24 Yan, L., Chen, J., Zhang, C. and Ma, Z. 2007. Molecular characterization of benzimidazole-resistant isolates of Cladosporium fulvum. FEMS Microbiol. Lett. 278:242-248.   DOI
25 Sedlakova, B. and Lebeda, A. 2008. Fungicide resistance in Czech populations of cucurbit powdery mildews. Phytoparasitica 36:272-289.   DOI
26 Staub, T. 1991. Fungicide resistance: practical experience with antiresistance strategies and the role of integrated use. Annu. Rev. Phytopathol. 29:421-442.   DOI
27 Weir, B. S., Johnston, P. R. and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73:115-180.   DOI