• Title/Summary/Keyword: Polymorphic phase transition(PPT)

Search Result 4, Processing Time 0.018 seconds

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics

  • Bae, Seon-Gi;Shin, Hyea-Gyiung;Sohn, Eun-Young;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.78-81
    • /
    • 2013
  • $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.

Effects of Ta Substitution on Dielectric and Piezoelectric Properties of Pb-free (Na0.53K0.47)(Nb1-xTax)O3 Ceramics (Ta 치환에 따른 비납계 (Na0.53K0.47)(Nb1-xTax)O3 세라믹의 압전 및 유전 특성)

  • Lee, Jung-Hoon;Ryu, Gyung-Hyun;Sung, Yeon-Soo;Cho, Jong-Ho;Song, Tae-Kwon;Kim, Myong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.467-470
    • /
    • 2011
  • Pb(Zr,Ti)$O_3$ (PZT) based ceramics with superior piezoelectric properties have been extensively used in various domestic and industrial appliances. However, PZT ceramics causing environmental contamination and health problems need to be eventually replaced by any of Pb-free materials. $(Na_{0.53}K_{0.47})(Nb_{1-x}Ta_x)O_3$ (NKNT), one of Pb-free piezoelectric ceramics, has long been known but its properties are not fully understood and developed. In this study, dielectric and piezoelectric properties of Pb-free NKNT ceramics were studied with Ta substitution for B-site at x = 0~0.6. It was found that polymorphic phase transition (PPT) between orthorhombic and tetragonal phases was notably influenced by Ta substitution. The highest piezoelectric coefficient ($d_{33}$) of 284 pC/N was occurred at x = 0.45.

Dielectric and Piezoelectric Properties of 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 Ceramics as a Function of Calcination Temperature (하소온도 변화에 따른 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 세라믹스의 유전 및 압전 특성)

  • Park, Min-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun;Jeong, Woy-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.104-108
    • /
    • 2013
  • In this paper, the $0.95(Na_{0.5}K_{0.5})_{0.04}[(Nb_{0.8}Ta_{0.20})_{0.994}Co_{0.015}]O_3$(abbreviated as NKNT) + $0.05KNbO_3$ lead-free piezoelectric ceramics were synthesized by the conventional mixed oxide method route with normal sintering. And also, the effects of calcination temperature on the microstructure, dielectric properties, and piezoelectric properties were investigated. A polymorphic phase transition(PPT) between orthorhombic and tetragonal phases was observed in specimens calcined at $810^{\circ}C{\sim}850^{\circ}C$. The ceramics calcined at $830^{\circ}C$ showed excellent piezoelectric properties: $d_{33}$= 179 pC/N, $k_p$= 0.384, $Q_m$= 79.73). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.

Dielectric and piezoelectric properties of 0.96(Na0.5K0.5)NbO3-0.04(Ba(1-x)Srx)TiO3 lead-free ceramics (0.96(Na0.5K0.5)NbO3-0.04(Ba(1-x)Srx)TiO3 무연 세라믹스의 유전 및 압전 특성)

  • Kim, Mi-Ro;Yoon, Seok-Jin;Choi, Ji-Won
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2010
  • 0.96$(Na_{0.5}K_{0.5})NbO_3$-0.04$(Ba_{(1-x)}Sr_x)TiO_3$ lead free piezoelectric ceramics were synthesized to enhance the piezoelectric properties of (Na,K)$NbO_3$. The systhesis and sintering method were the conventional solid state reaction method and general sintering method in air atmosphere. The polymorphic phase transition(PPT) was observed at all composition(0 $\leq$ x $\leq$ 0.05) when $(Ba_{(1-x)}Sr_x)TiO_3$ were added in the $(Na_{0.5}K_{0.5})NbO_3$. As Sr concentration was increased, grain size, dielectric loss(tan$\delta$) and mechanical quality factor($Q_m$) were decreased and piezoelectric constant($d_{33}$) and electromechanical coupling factor($k_p$) were increased within a limited value. The optimized piezoelectric and properties, $d_{33}$, $k_p$, $Q_m$, and tand, of 0.96$(Na_{0.5}K_{0.5})NbO_3$-0.04$(Ba_{(1-x)}Sr_x)TiO_3$ were 139 pC/N, 0.31 %, 95, 0.04 at the composition of x=0.04.