• Title/Summary/Keyword: Polymerized methods

Search Result 99, Processing Time 0.025 seconds

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

Microleakage of endodontically treated teeth restored with three different esthetic post and cores (심미적 포스트 코어의 종류에 따른 미세누출에 관한 연구)

  • Park, Ji-Geun;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Statement of problem: At present, as the esthetic demands are on the increase, there are many ongoing studies for tooth-colored post and cores. Most of them are about fiber post and prefabricated zirconia post, but few about one-piece milled zirconia post and core using CAD/CAM (computer-aided design/computer-aided manufacturing) technique. Purpose: The objective of this study was to compare microleakage of endodontically treated teeth restored with three different tooth-colored post and cores. Material and methods: Extracted 27 human maxillary incisors were cut at the cementoenamel junction, and the teeth were endodontically treated. Teeth were divided into 3 groups (n=9); restored with fiber post and resin core, prefabricated zirconia post and heat-pressed ceramic core, and CAD/CAM milled zirconia post and core. After the preparation of post space, each post was cemented with dual-polymerized resin cement (Variolink II). Teeth were thermocycled for 1000 cycles between $5-55^{\circ}C$ and dyed in 2% methylene blue at $37^{\circ}C$ for 24 hours. Teeth were sectioned (bucco-lingual), kept the record of microleakage and then image-analyzed using a microscope and computer program. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: All groups showed microleakage and there were no significant differences among the groups (P>.05). Prefabricated zirconia post and heat-pressed ceramic core showed more leakage in dye penetration at the post-tooth margin, but there was little microleakage at the end of the post. Fiber post and resin core group and CAD/CAM milled zirconia post and core group indicated similar microleakage score in each stage. Conclusion: Prefabricated zirconia post and heat-pressed ceramic core group demonstrated better resistance to leakage, and fiber post and resin core group and CAD/CAM milled zirconia post and core group showed the similar patterns. The ANOVA test didn't indicate significant differences in microleakage among test groups. (P>.05)

The effect of silane treatment timing and saliva contamination on shear bond strength of resin cement to porcelain (Silane의 처리시기와 타액오염이 도재-레진 시멘트의 전단 결합강도에 미치는 영향)

  • Ro, Young-Seon;Ryu, Jae-Jun;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2009
  • Statement of problem: Porcelain veneers have become a popular treatment modality for aesthetic anterior prosthesis. Fitting porcelain veneers in the mouth usually involve a try-in appointment, which frequently results in salivary contamination of fitting surfaces. Purpose: An in vitro study was carried out to investigate the effect of silane treatment timing and saliva contamination on the resin bond strength to porcelain veneer surface. Material and methods: Cylindrical test specimens (n=360) and rectangular test specimens (n=5) were prepared for shear bond test and contact angle analysis. Whole cylindrical specimens divided into 20 groups, each of which received a different surface treatment and/or storage condition. The composite resin cement stubs were light-polymerized onto porcelain adherends. The shear bond strengths of cemented stubs were measured after dry storage and thermocycling (3,000 cycles) between 5 and $55^{\circ}C$. The silane and their reactions were chemically monitored by using Fourier Transform Infrared Spectroscopy analysis (FTIR) and contact angle analysis. One-way analysis of variance (ANOVA) and Dunnett's multiple comparison were used to analyze the data. Results: FT-IR analysis showed that salivary contamination and silane treatment timing did not affect the surface interactions of silane. Observed water contact angles were lower on the saliva contaminated porcelain surface and the addition of 37% phosphoric acid for 20 seconds on saliva contaminated porcelain increased the degree of contact angle. Silane applied to the porcelain, a few days before cementation, resulted in increasing the bond strength after thermocycling. Conclusion: Within the limitation of this study, it can be concluded that it would be better to protect porcelain prosthesis before saliva contamination with silane treatment and to clean the contaminated surface by use of phosphoric acid.

The study of shear bond strength of a self-adhesive resin luting cement to dentin (상아질에 대한 자가 접착 레진 시멘트의 전단결합강도에 관한 연구)

  • In, Hee-Sun;Park, Jong-Il;Choi, Jong-In;Cho, Hye-Won;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.535-543
    • /
    • 2008
  • Purpose: The objective of this study was to compare the bonding characteristics of a new self-adhesive resin cement to dentin, which does not require bonding and conditioning procedure of the tooth surface, and conventional resin cement. The effect of phosphoric acid etching prior to application of self-adhesive resin cement on the shear bond strength was also evaluated. Material and methods: Fortyfive non-carious human adult molars extracted within 6 months were embedded in chemically cured acrylic resin. The teeth were ground with a series of SiC-papers ending with 800 grit until the flat dentin surfaces of the teeth were exposed. The teeth were randomly divided into 3 experimental groups. In group 1, self-adhesive resin cement, RelyX Unicem (3M ESPE, Seefeld, Germany) was bonded without any conditioning of teeth. In group 2, RelyX Unicem was bonded to teeth after phosphoric acid etching. For group 3, Syntac Primer (Ivoclar Vivadent AG, Schaan, Liechtenstein) was applied to the teeth before Syntac adhesive (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Helibond (Ivoclar Vivadent AG, Schaan, Liechtenstein) followed by conventional resin cement, Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein). To make a shear bond strength test model, a plastic tuble (3 mm diameter, 3 mm height) was applied to the dentin surfaces at a right angle and filled it with respective resin cement, and light-polymerized for 40 seconds. All the specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before test. Universal Testing Machine (Z020, Zwick, Ulm, Germany) at a cross head speed of 1 mm/min was used to evaluate the shear bond strength. The failure sites were inspected under a magnifier and Scanning Electron Microscope. The data was analyzed with One way ANOVA and Scheffe test at ${\alpha}$= 0.05. Results: (1) The shear bond strengths to dentin of RelyX Unicem was not significantly different from those of Variolink II/Syntac. (2) Phosphoric acid etching lowered the shear bond strength of RelyX Unicem significantly. (3) Most of RelyX Unicem and Variolink II showed mixed fractures, while all the specimens of RelyX Unicem with phosphoric acid etching demonstrated adhesive failure between dentin and resin cement. Conclusion: Shear bond strength to dentin of self-adhesive resin cement is not significantly different from conventional resin cement, and phosphoric acid etching decrease the shear bond strength to dentin of self-adhesive resin cement.

Physical Properties of the Hydrogel Using Alginate (Alginate가 포함된 하이드로겔의 물리적 특성)

  • Woo, Chul-min;Heo, Seongin;Lee, Hyun Mee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • Purpose: A hydrogel including alginate and $CaCl_2$ extracted from seaweed was manufactured, and their physical properties were investigated. Also, its applicability as contact lenses was examined. Methods: A film-type sample used in this experiment was manufactured using 2-hydroxyethyl methacrylate (HEMA), which is the raw material of hydrogel contact lenses; azobisiobutyonitile (AIBN), which is an initiator and ethylenglycoldimethacrylate (EGDMA), which is a cross-linking agent. It was hydrated in a PBS solution for 24 hours, and an interpenetrating polymer network (IPN) was formed in 1% and 2% alginate and 1%, 3%, and 5% $CaCl_2$ solutions for 24 hours, respectively. Results: The measurement of the physical properties of the film after the IPN showed that the moisture content was 30.89~36.89%, the refractive index was 1.431~1.441, the contact angle was $62.98{\sim}80.45^{\circ}$, and the tensile strength was 2.378~4.215 ($gf/mm^2$). Also, the physical properties hardly changed as the content of alginate increased, and the moisture content decreased as the content of $CaCl_2$ increased. As a result of the IPN, the moisture content and contact angle decreased compared to those of basic HEMA, but the tensile strength increased. The tensile strength of the second IPN was higher than that of the first IPN. In the case of $CaCl_2$, for the sample polymerized for 24 hours and the second IPN sample with 2% alginate, the contact angle decreased as the content of $CaCl_2$ increased. Conclusions: In this study, the tensile strength increased as the content of $CaCl_2$ increased, and the wettability increased as a result of IPN of alginate and $CaCl_2$. The hydrogel containing the alginate and $CaCl_2$ was confirmed possible utilization as contact lens material.

A STUDY ON THE PHYSICAL PROPERTIES OF A COMPOSITE RESIN INLAY BY CURING METHODS (중합방법에 따른 복합레진 인레이의 물리적 성질에 관한 연구)

  • Cho, Sung-A;Cho, Young-Gon;Moon, Joo-Hoon;Oh, Haeng-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.254-266
    • /
    • 1997
  • This study was to know the usefulness of argon laser for composite resin, to prove the polymerized effect of heat treatment of composite resin inlay and to get the curing method for optimal physical properties of composite resin inlay. In this study we used four light curing units and one heat curing unit: Visilux $II^{TM}$, a visible light gun: $SPECTRUM^{TM}$, an argon laser: Unilux AC$^{(R)}$ and Astorn XL$^{(R)}$, visible light curing unit: CRC-$100^{TM}$ for heat treatment. Compared to a control group, we divided the experemental groups into five as follows: Control group: Light curing(Visilux $II^{TM}$) Experimental group 1 : Light curing(Visilux $II^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 2: Light curing(Visilux $II^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment(CRC-$100^{TM}$) Experimental group 3 : Laser curing($SPECTRUM^{TM}$) Experimental group 4 : Laser curing($SPECTRUM^{TM}$) + Light curing(Unilux AC$^{(R)}$) Experimental group 5 : Laser curing($SPECTRUM^{TM}$) + Light curing(Astron XL$^{(R)}$) + Heat treatment (CRC-$100^{TM}$) According to the above classification, we made samples through the curing of Clearfil CR Inlay$^{(R)}$, which is a composite resin for inlay, in a separable cylindrical metal mold and polycarbonate plate. And then, we measured and compared the value of compressive strength, diametral tensile strength and the surface micro hardness of each sample. The results were as follows : 1. Among the experimental groups, group 5 showed the highest value of compressive strength, $157.50{\pm}10.24$ kgf and control group showed the lowest value of compressive strength, $103.93{\pm}21.93$ kgf. Control group showed significant difference with the experimental groups(p<0.001). Group 2 which was treated by the heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was significant difference group 4 and group 5(p<0.001). 2. Among the experimental groups, group 5 showed the highest value of diametral tensile strength, $95.84{\pm}1.97$ kgf and control group showed the lowest value of diametral tensile strength, $81.80{\pm}2.17$ kgf. Control group which was cured by visible light showed higher diametral tensile strength than group 3 which was cured Argon Laser. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 3. Among the experimental groups, group 5 showed the highest value of microhardness of top surface, $148.42{\pm}9.57$ kgf and control group showed the lowest value of microhardness, $111.43{\pm}7.63$ kgf. In the case of bottom surface, group 5 showed the highest value of $146.19{\pm}7.62$ kgf, and control group showed the lowest, $104.03{\pm}11.05$ kgf. Group 3 which was cured by Argon Laser showed higher diametral tensile strength than control group which was cured only with a visible light gun. Group 2 which was treated by heat showed higher compressive strength than that of group 1 which was not, and there was a significant difference between group 1 and group 2(p<0.001). Group 5 which was treated by heat showed higher compressive strength than group 4 which was not, and there was a significant difference group 4 and group 5(p<0.001). 4. According to the above results, we took a conclusion that argon laser can be used as a useful unit for curing the composite resin and heat treatment can improve the physical properties of the composite resin inlay.

  • PDF

Effect of universal primer on shear bond strength between resin cement and restorative materials (다용도 프라이머가 레진 시멘트와 수복재의 전단 결합 강도에 미치는 영향)

  • Kim, Na-Hong;Shim, June-Sung;Moon, Hong-Suk;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.112-118
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference in shear bonding strength between resin cements to dental materials when a universal primer (Monobond plus) was applied in place of a conventional primer. Materials and methods: Four groups of testing materials: gold alloy (Argedent Euro, n = 16), non precious metal (T-4, n = 20), zirconia (Cercon, n = 20) and glass ceramic (IPS e.max press, n = 20), were fabricated into discs, which were embedded in an acrylic resin matrix. The gold alloy specimens were airborne-particle abraded, 8 of the specimens were coated with Metal primer II, while the remaining 8 specimens were coated with Monobond plus. The non precious and zirconia specimen were airborne-particle abraded then, the control group received Alloy primer coating, while the other was coated with Monobond plus. Glass ceramic specimens were etched. 10 specimens were coated with Monobond-S and the remaining specimens were coated using Monobond plus. On top of the surface, Multilink N was polymerized in a disc shape. All of the specimens were thermal cycled before the shear bonding strength was measured. Statistical analysis was done with Two sample $t$-test or Mann-Whitney U test (${\alpha}$=.05). Results: There were no significant differences in bonding strength depending on the type of primer used in the gold alloy and glass ceramic groups ($P$>.05), however, the bonding strengths of resin cements to non precious metal and zirconia groups, were significantly higher when the alloy primer was used ($P$<.05). Conclusion: Within the limitations of this study, improvement of universal primers which can be applied to all types of restorations is recommended to precious metals and zirconia ceramics. But, the bond strengths of non precious metals and zirconia ceramics were significantly lower when compared to a 10-MDP primer. More research is needed to apply universal primers to all types of restorations.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

Effect of storage condition of resin cement on shear bond strength of the orthodontic bracket (레진시멘트의 보관 조건이 치열교정용 브라켓의 전단접착강도에 미치는 영향)

  • Seul-Gi, Yi;Jin-Woo, Kim;Se-Hee, Park;Yoon, Lee;Eung-Hyun, Kim;Kyung-Mo, Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.189-195
    • /
    • 2022
  • Purpose: For orthodontic bracket bonding, light curing resin cement is widely used because the process is convenient, and it can be polymerized at the desired time. This study compared the difference of bonding strength of orthodontic resin cement according to storage condition. Materials and Methods: After acid etching the bovine enamel surface with 37% phosphoric acid, 15 orthodontic brackets for mandible incisors were bonded with Ortho Connect and Orthomite LC according to following three conditions; 1) Immediate after 4℃ refrigeration for 3 months (IR), 2) One day room temperature after 4℃ refrigeration for 3 months (OR), 3) Room temperature for 3 months (RT). The shear bond strength was measured with a universal material tester and failure pattern of the specimen was observed. Two-way ANOVA and One-way ANOVA were used at the 95% significance level. Results: Ortho Connect that was applied immediately after refrigeration showed the maximum shear bond strength. Orthomite that was applied immediately after refrigeration showed the lowest shear bond strength, and the group stored at room temperature for three months showed the highest shear bond strength, and the difference between the two groups was significant. Conclusion: Ortho Connect can be used without worrying about bond strength even if it is used immediately after refrigeration, but Orthomite should be kept at room temperature sufficiently after refrigeration.